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Abstract. It is shown that every separable abelian topological group is isomorphic with
a topological subgroup of a monothetic group (that is, a topological group with a single
topological generator). In particular, every separable metrizable abelian group embeds into a
metrizable monothetic group. More generally, we describe all topological groups that can
be embedded into monothetic groups: they are exactly the abelian topological groups of weight
Wc covered by countably many translations of every non-empty open subset.

1 Introduction

A recent result by the present authors [9] states that every separable topological
group is isomorphic with a topological subgroup of a group topologically generated
by two elements. This is a topological analogue of the Higman±Neumann±Neumann
Theorem. It leads to a simple description of those topological groups which are em-
beddable into topological groups with two (equivalently, ®nitely many) generators:
they are exactly the topological groups that are @0-bounded (that is, covered by
countably many translations of each non-empty open subset) and have weight Wc.

Topological groups having one generator rather than two, that is, monothetic
groups, are, naturally, abelian, and so are all their topological subgroups. Rather
surprisingly, commutativity turns out to be the only restriction imposed on the pre-
vious result by reducing the number of generators from two to one.

Theorem 1.1. Every separable abelian topological group embeds into a singly generated

topological group.

It is interesting to notice that, unlike the above mentioned topological version of
the Higman±Neumann±Neumann theorem, our Theorem 1.1 has no apparent alge-
braic counterpart.
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Corollary 1.2. A topological group G is isomorphic with a topological subgroup of a

monothetic group if and only if G is abelian, @0-bounded, and has weight Wc.

The present article was largely stimulated by the following, very general, question
by Mycielski [11]: what can be said about completely metrizable monothetic groups?

The following result gives some idea of the large size of such groups.

Theorem 1.3. Every separable metrizable abelian group is isomorphic with a topologi-

cal subgroup of a completely metrizable monothetic group.

For example, all additive topological groups of separable Banach spaces are to be
found among subgroups of complete metric monothetic groups.

2 Preliminary results and constructions

Let X � �X ; �� be a pointed set, that is, a set with a distinguished element � A X . By
A�X ; �� or simply A�X� if no confusion can arise we shall denote the free abelian
group on Xnf�g, having � as its zero element, and by L�X ; �� a real vector space
having Xnf�g as its Hamel basis and � as its zero vector. It is well known that
A�X ; �� is canonically isomorphic with a subgroup of the additive group of L�X ; ��,
generated by X.

Let r be a pseudometric on X. As was shown by Graev [5], there exists a maximal
translation-invariant pseudometric r on A�X ; ��, whose restriction to X coincides
with r. A similar result was established [1, 12] for the vector span of X: there exists a
maximal prenorm pr on L�X ; ��, such that for every x; y A X one has r�x; y� �
pr�xÿ y�.

Since the pseudometric on A�X� induced by the prenorm pr is clearly translation
invariant, for all x; y A A�X ; �� one has pr�xÿ y�W r�x; y�. The following important
and non-trivial result, obtained by successive e¨orts of Tkachenko [14] and UspenskiõÆ
([15], pp. 660±662), shows that the two pseudometrics on A�X � thus obtained in fact
coincide.

Theorem 2.1 (Tkachenko±UspenskiõÆ). If r is any pseudometric on a pointed set �X ; ��,
then pr�xÿ y� � r�x; y� for all x; y A A�X ; ��.

If now X is a Tychono¨ topological space, then the free abelian topological group

on X is the group A�X� equipped with the ®nest group topology inducing the given
topology on X as a subspace. Such a topology always exists, is Hausdor¨, and has
the universal property of the following kind: every continuous mapping f from X

to an arbitrary abelian topological group G lifts to a unique continuous homo-
morphism f : A�X� ! G. It was ®rst observed by Graev that the topology of A�X � is
determined by the collection of all translation invariant pseudometrics of the form r,
where r is a continuous pseudometric on X. For an account of the theory of free
abelian topological groups, see e.g. [8].

In a similar way, the free locally convex space on X is the vector space L�X �
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equipped with the ®nest locally convex topology inducing the given topology on
X. Such a topology exists and is Hausdor¨ whenever X is a Tychono¨ topological
space, and every continuous mapping f from X to an arbitrary locally convex space
E extends to a unique continuous linear operator from L�X� to E. The topology of
L�X � is determined by the collection of all prenorms of the type Pr; see [1, 12].

The following result was obtained by Graev [5].

Theorem 2.2 (Graev). Let G be a Hausdor¨ topological group, and let i : A�G� ! G be

the unique continuous homomorphism from the free abelian topological group on (the

underlying topological space of ) G to the topological group G whose restriction to G is
the identity map. Then i is a factor homomorphism of topological groups.

The Tkachenko±UspenskiõÆ Theorem was put to use in [10], where the following
technique was suggested. Let G be a topological group. Denote by i : A�G� ! G the
homomorphism described in Theorem 2.2, and let K denote the kernel of i. Then K is
a closed topological subgroup of A�G�, and the topological factor group A�G�=K is
isomorphic to G. Moreover the same remains true if we consider the group A�G�
equipped with the Graev metric d, where d is a translation-invariant metric generat-
ing the topology of G. According to the Tkachenko±UspenskiõÆ Theorem, �A�G�; d � is
isomorphic to a topological subgroup of the normed space �L�G�; pd�. It is now easy
to see that the topological factor group L�G�=K contains G as a (closed) topological
subgroup.

Proposition 2.3 ([10]). Every metrizable abelian topological group is isomorphic to a

topological subgroup of a topological factor group of the additive group of a suitable

Banach space.

We need to develop a slight technical variation on the above themes.
Let R be a collection of pseudometrics on a pointed set X � �X ; �� inducing some

(Tychono¨ ) topology. (In precise terms, the collection of all open balls formed
with respect to pseudometrics from R forms a topology base.) We will denote by
A�X ; �;R� the free abelian group A�X ; ��, equipped with the collection of Graev
pseudometrics R � fr : r A Rg. Mostly we shall be viewing A�X ; �;R� as an abelian
topological group under the (group) topology generated by all pseudometrics from
R. The space X evidently is a topological subspace of A�X ; �;R�. The following is
also clear.

Proposition 2.4. Let �X ; �;R� be as above. Let G be an abelian topological group,
and let P be some collection of translation-invariant pseudometrics on G generating

the topology. Let f : X ! G be a mapping sending � to 0G and such that for every

element d A P there is a r A R making the map f : �X ; r� ! �G; d� Lipschitz. Then the

(unique) algebraic homomorphism f : A�X� ! G, extending f, is continuous.

In a similar way, we de®ne a locally convex space L�X ; �;R� as the linear span
L�X ; �� of X with � serving as zero equipped with the (locally convex topology gen-
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erated by) the collection of prenorms ~R � fpr : r A Rg. The space X is a topological
subspace of L�X ; �;R�. One has the following counterpart of Proposition 2.4.

Proposition 2.5. Let E be a locally convex space, and let P be some collection of pre-

norms generating the topology of E. Let f : X ! E be a mapping sending � to 0E

and such that for every p A P there is a r A R making the map f : �X ; r� ! �E; p�
Lipschitz. Then the (unique) linear operator f : L�X ; �;R� ! E, extending f, is

continuous.

Now Theorem 2.1 implies the following.

Corollary 2.6. The additive topological group of the locally convex space L�X ; �;R�
contains an isomorphic copy of the abelian topological group A�X ; �;R� in a canonical

way.

If X � �X ; �� is a pointed Tychono¨ topological space, we will denote by R�X� the
collection of all continuous pseudometrics on X. Then A�X ; �;R�X�� is naturally
isomorphic to the Graev free abelian topological group A�X � on X, cf. [5, 8], while
L�X ; �;R�X�� is naturally isomorphic to the Graev free locally convex space L�X �
on X, cf. [1, 4, 12].

Let G be an abelian topological group, and let R be an arbitrary family of con-
tinuous translation-invariant pseudometrics generating the topology of G. The iden-
tity mapping IdG satis®es the assumption of Proposition 2.4 and therefore extends to
a unique continuous homomorphism onto i : A�X ; �;R� ! G, sending � to 0.

Proposition 2.7. The homomorphism i : A�X ; �;R� ! G is open.

Proof. In fact, the same homomorphism i is open even if considered as a mapping
from the free abelian topological group A�G� to G; see [2].

Denote by KG the kernel of i, which is a closed topological subgroup of A�X ; �;R�.
The openness of i implies the following result.

Corollary 2.8. G is canonically topologically isomorphic to the topological factor group
A�X ; �;R�=KG.

Let G be a countable topological group. Now choose as R the collection of all
translation-invariant continuous pseudometrics on G which are bounded by 1. Then
R determines the topology of G (which is true of every topological group G, cf. [5]).
Denote by d the discrete metric on G, that is, one taking values 0 and 1 only. (In
general, d is discontinuous, unless of course G is discrete.) Notice that for each r A R
the identity mapping �G; d� ! �G; r� is Lipschitz-1. This implies that the identity
isomorphism �A�G�; d � ! �A�G�;R� is continuous. Noticing that the locally convex
space L�G; d� is separable metrizable and contains �A�X �; d � as a topological sub-
group (Corollary 2.6), one arrives at the following result.
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Lemma 2.9. Every countable topological group G is isomorphic to a topological factor

group of a group A�G;R�, contained as a topological subgroup in a separable locally
convex space L�G;R�, admitting a ®ner separable metrizable locally convex topology.

3 Rolewicz's lemma

Let us introduce the following ad hoc de®nition.

De®nition 3.1. An abelian topological group G is called an o-torus if it is topologi-
cally generated by the union of countably in®nitely many subgroups topologically
isomorphic to the circle group TGU�1�.

The following was essentially proved by Rolewicz [13]. Even though he did not
state the result in its full generality, the proof is his. The construction forms a rich
source of monothetic groups beyond the locally compact case (cf. e.g. [3] and refer-
ences therein). Therefore we ®nd it very useful to state Rolewicz's Lemma in its full
generality, and we believe that such a generalization is of interest on its own and not
just in connection with the subsequent application in this article. In the proof we will
stick to the multiplicative notation as more convenient in this particular context.

Theorem 3.2. Every completely metrizable o-torus is monothetic.

Proof. Let G be topologically generated by the union of a countable sequence of its
subgroups Ti, i � 1; 2; . . . ; each of which is topologically isomorphic to the circle
group T. Fix a translation invariant metric r generating the topology on G. For
i � 1; 2; . . . choose recursively a number ni A N and an element xi A Ti satisfying the
following properties.

1. r�xi; 0� < 2ÿi.

2. The ®rst ni powers of the product x1x2 . . . xi form a 2ÿi-net in the compact sub-
group T1T2 . . . Ti of G.

3. Whenever j > i, the ®rst ni powers of the element xj are contained in the r-ball of
zero having radius 2ÿj.

As the base of recursion, choose any element x1 A T1 having in®nite order and
contained in the 1=2-neighbourhood of zero formed with respect to the metric r. To
perform the recursive step, recall the classical Kronecker Lemma: if x1; . . . ; xn are
rationally independent real numbers, then the n-tuple �x 01; . . . ; x 0n� made up of their
images under the factor homomorphism R! R=Z to the circle group TGR=Z
generates an everywhere dense subgroup in the n-torus Tn. Now assume that x1; . . . ;
xiÿ1 and n1; . . . ; niÿ1 with the properties (1)±(3) have been chosen. If the closed sub-
group Ai generated by x1 . . . xiÿ1 coincides with T1 . . . Ti, we set xi :� 0. Otherwise,
Ai is a proper closed subgroup of the group T1 . . . Ti, and clearly the latter is iso-
morphic to the topological direct sum Ai � Ti. Moreover, the compact abelian Lie
group Ai is itself isomorphic to a torus group T j of a suitable rank j W i ÿ 1, and the
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image of the topological generator x1 . . . xiÿ1 in T j under such an isomorphism is a
j-tuple, say �z1; . . . ; zj�, of rationally independent elements of the circle group. Now
choose xi A Ti to be an element that is rationally independent of the elements z1; . . . ;
zj and such that all the powers xi; x

2
i ; . . . ; xniÿ1

i are contained in the r-neighbourhood
of zero having radius 2ÿi. It follows from Kronecker's Lemma that the powers of
x1 . . . xi are everywhere dense in T1 . . . Ti. Consequently it is possible to choose ni

su½ciently large that the ®rst ni powers of x1 . . . xi form a 2ÿi-net in T1 . . . Ti. The
step of the recursion is thus accomplished.

We claim that the element x �Qy
l�1 xl , which is clearly well-de®ned since the

metric r on G is complete, is a topological generator for G. It is enough to demon-
strate that for every number k A N the closure of the cyclic group hxi contains Tk.
Let k A N and let z A Tk. Now let i X k be arbitrary. Since z A T1T2 . . . Ti, condition
(2) implies the existence of an m A f0; 1; 2; . . . ; nig such that the mth power of x 0 �
x1x2 . . . xi is at a distance less than 2ÿi from z. The mth power of the remainder of
the in®nite product, x�x 0�ÿ1 � Qy

l�i�1 xl , is at a distance from zero which is less than

Xy
l�i�1

r�0; �xl�m� <
Xy

l�i�1

2ÿl � 2ÿi:

(Here we have used condition (3).) Finally,

r�xm; z�W r��x 0�m; z� � r��x�x 0�ÿ1�m; 0� < 2 iÿ1:

Since i can be chosen arbitrarily large, the latter inequality means that z is the limit of
a sequence of suitable powers of x, and the proof is ®nished.

4 The main construction

Assume that we are given the following collection of data:

1. a separable topological vector space E;

2. a countable everywhere dense subset X � fxm : m A N�g of E.

Form the direct sum topological vector space, equipped with the direct product
topology:

H :� E l l2�N� �N��:

We will identify E in a natural way with the topological vector subspace (and sub-
group) ®rst direct summand of H. Let fem;n : m; n A N�g be an orthonormal basis for
l2�N� �N�� and de®ne

xm;n :� �nxm; em;n� A H:

Let D denote the subgroup of H algebraically generated by fxm;n; m; n A N�g.
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Let d be an arbitrary translation invariant continuous pseudometric on E. The
family of all such pseudometrics generates the topology of E. Denote by ~d the con-
tinuous translation invariant pseudometric on H de®ned by setting for each x1; x2 A E

and y1, y2 A l2�N� �N��
~d��x1; y1�; �x2; y2�� :� d�x1; x2� � ky1 ÿ y2k:

The collection of all pseudometrics of the form ~d generates the topology of H.

Lemma 4.1. The family of all neighbourhoods W of zero with the property

�D�W�V E �W VE

is a neighbourhood basis in H.

Proof. Let d be an arbitrary pseudometric on E as above, and let

W :� fz A H : ~d�z; 0� < 1g:
To verify that W has the property in the statement of the lemma, it is clearly enough
to show that for z A H and x A D, ~d�z� x; 0�X 1 implies ~d�z; 0�X 1. Putting y �
z� x, we see that it su½ces to show that ~d�x; y�X 1.

An arbitrary element x of D is of the form

Xs

i�1

kixmi ;ni
1

�Xs

i�1

kinixmi
;
Xs

i�1

kiemi ;ni

�
A H: �4:1�

One can assume without loss in generality that all the integer coe½cients ki are
non-zero, and that �mi; ni�0 �mj; nj� for i 0 j. Now assume that x0 0 and let y A E

be arbitrary. (According to our earlier convention, we shall identify y with the ele-
ment �y; 0� A H.) One has

~d�x; y� � d

�Xs

i�1

kinixmi
; y

�
�




Xs

i�1

kiemi ;ni






X




Xs

i�1

kiemi ;ni






X 1; �4:2�

and the claim follows.

Lemma 4.2. The group D is discrete.

Proof. Indeed, the image of D under the second coordinate projection H !
l2�N� �N�� (which is a homomorphism of topological vector spaces) is a discrete
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subgroup of l2�N� �N��, formed by all linear combinations of the standard basis
elements with integer coe½cients.

Lemma 4.3. The linear span of D is everywhere dense in H.

Proof. Let m A N� be arbitrary. For every n A N�, the linear span of D contains the
element �1=n�xm;n � �xm; �1=n�em;n�, and for each continuous pseudometric d on E

~d 1
n

xm;n; xm

ÿ � � d�xm; xm� � 1
n

em;n



 

 � 1
n
: �4:3�

Consequently xm is in the closed linear span of D. Since the set fxm : m A N�g is
everywhere dense in E, it follows that the closed linear span of D contains E. Further,
each element of the form

em;n � xm;n ÿ 1
n

xm;

where m; n A N�, is in the closed linear span of D as well. But fem;n : m; n A N�g is
an orthonormal basis for l2�N� �N��. The claim is established.

Lemma 4.4. The factor group H=D is an o-torus.

Proof. According to Lemma 4.3, the topological group H is topologically generated
by the union of countably many one-parameter subgroups passing through the ele-
ments of the form xm;n. Therefore H=D is topologically generated by the union of
images of all such one-parameter subgroups. But those images are tori, and there are
countably many of them.

Lemma 4.5. The restriction of the factor homomorphism p : H ! H=D to E is a

topological group isomorphism between E and its image in H=D.

Proof. Since DVE � f0g, the homomorphism pjE is in fact an algebraic isomorphism,
and clearly it is continuous. It remains to prove that pjE is open on its image. Let V

be an arbitrary neighbourhood of zero in H. According to Lemma 4.1, there is a
neighbourhood W of zero contained in V such that �D�W�VE �W VE, that is,
p�W VE� � p�W�V p�E�. Consequently, the interior of p�W VE� in p�E� is non-
empty (it contains the open set p�W�V p�E� in the subspace topology induced from
H=D), and the proof is ®nished.

Lemma 4.6. If E is also complete and metrizable, then H=D is monothetic and metriz-

able.
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Proof. The metrizability of H, and therefore of H=D, is quite obvious, and mono-
theticity of H=D follows from Rolewicz's Lemma and Lemma 4.4.

Combining together Lemmas 4.6 and 4.5, we obtain the following.

Lemma 4.7. Let E be a separable metrizable topological vector space. Then E embeds,
as a topological group, into a monothetic metrizable group H.

Our next task will be to obtain a similar result in the absence of metrizability.

Lemma 4.8. Let the topological vector space E admit a ®ner Hausdor¨ topology T that

makes it into a separable metrizable topological vector space. Then the group H=D is

monothetic.

Proof. Denote by F the underlying vector space of E equipped with the topology T.
The identity mapping F ! E is a continuous linear operator, and as such, it extends
over the completions of the two topological vector spaces in a unique way, giving rise
to a continuous homomorphism (in general, no longer an algebraic isomorphism)

i : F̂ ! Ê:

Choose a countable everywhere dense subset X HF , X � fxm : m A N�g. Then X

remains everywhere dense in E as well. Now apply our construction to both spaces Ê

and F̂ . To distinguish between the emerging pairs of objects, we will use subscripts E
and F, respectively. Thus HF � F̂ l l2�N� �N��, etc. Obviously the subgroups DE

and DF coincide as abstract groups, or, more precisely, ijDF
: DF ! DE is a topo-

logical group isomorphism. Consequently the homomorphism i factors through DF

to give rise to a continuous homomorphism j : HF=DF ! HE=DE . Evidently the
image of j is an everywhere dense subgroup of HE=DE . Since the former of the two
groups is completely metrizable, Rolewicz's Lemma coupled with Lemma 4.4 implies
that HF=DF is a monothetic group. But the image of a monothetic group under a
continuous homomorphism having dense image is again monothetic.

The following is a direct consequence of Lemmas 4.8 and 4.5.

Lemma 4.9. Every topological vector space E that admits a ®ner Hausdor¨ topology T
making it into a separable metrizable topological vector space embeds as a topological

subgroup into a monothetic group.

5 Proofs of the main results

Denote provisionally by G the class of all topological groups that embed, as topo-
logical subgroups, into monothetic groups.

The following is obvious.
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Lemma 5.1. The class G is closed under passing to topological subgroups.

The following is less evident.

Lemma 5.2. The class G is closed under passing to topological factor groups.

Proof. Indeed, let G A G, that is, for some monothetic group H, one has G < H. Let
F be a closed subgroup of G. Denote by F 0 the closure of F in H; one has F 0 VG � F .
Then it is a standard result (cf. e.g. [7]) that the topological factor group G=F is iso-
morphic to a topological subgroup of the factor group H=F 0 in a canonical way, and
at the same time the group H=F 0 is clearly monothetic.

The proof of the next lemma is analogous to that of Corollary 1 of [9].

Lemma 5.3. The class G is closed under passing to completions.

Proof of Theorem 1.1. This follows from Lemmas 2.9, 5.1, 5.2, 5.3 and 4.9.

Proof of Corollary 1.2. It su½ces to apply a description of topological subgroups of
separable topological groups obtained in [9]: those are exactly the @0-bounded topo-
logical groups of weight Wc. Both the statement and the proof remain true if we add
the word `abelian' throughout.

Proof of Theorem 1.3. Every separable metrizable abelian topological group G is
isomorphic to a topological factor group of the free abelian group equipped with the
Graev metric A�G; r� where r is an arbitrary metric on G generating the topology. By
the Tkachenko±UspenskiõÆ Theorem, A�G; r� is isomorphic with a closed topological
subgroup of the free Banach space B�G; r�. Notice that B�G; r� is separable as well.
According to Lemma 4.7, B�G; r� is isomorphic with a topological subgroup of a
suitable monothetic metrizable group. An application of Lemmas 5.1, 5.2, and 5.3
®nishes the proof.
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