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Abstract. A class of topological groups is a wide variety if it is closed

under the formation of subgroups, products and continuous homomorphic

images. Walter Taylor introduced limit laws as analogues for topological

groups of algebraic laws for abstract groups, and proved a Birkhoff-style

characterization: a class is a wide variety if and only if it is the class of

models for some set of algebraic laws and some perhaps proper class of limit

laws. The class of wide varieties T (κ), for infinite cardinals κ, has played

a central role in the theory to date. A group is in T (κ) if and only if each

neighbourhood of its identity contains a normal subgroup of index strictly

less than κ. This paper contributes to our knowledge of the T (κ), and of the

relation of other wide varieties to the T (κ). In particular, it is shown that

the T (κ) are definable by a set (rather than a proper class) of limit laws;

indeed, the same is true of any wide subvariety of any T (κ). Further, the

class of wide varieties lying in each T (κ) is a set. On the other hand, it is

also shown that there exists a proper class of wide varieties which do not lie

in any T (κ), and constructions are given of certain families of such varieties,

each defined by sets of particularly simple limit laws.

1. Introduction

A wide variety of topological groups is a class of topological groups closed
under the formation of subgroups, products, and continuous homomorphic im-
ages. This notion was introduced by Taylor [14], following the introduction by
Morris [8, 9, 10] of the notion of a variety of topological groups, in which the
third condition above is replaced by closure under quotients. Taylor showed that
wide varieties may be characterized by a Birkhoff-style theorem, as those classes
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18 MORRIS, NICKOLAS AND PESTOV

which satisfy a collection, possibly a proper class, of limit laws. (See below for the
definition of a limit law.) This characterization holds, indeed, for wide varieties of
general topological algebras, given appropriate changes in the relevant definitions.

This paper continues the study of wide varieties and limit laws begun in [7],
solving some problems posed there, and others. Extensive use will be made of
material from [7], and it will be assumed that the reader is familiar with this,
though some definitions and results from [7] will be quoted here.

The family of wide varieties T (κ), for infinite cardinals κ, has proven fundamen-
tal in the theory to date. A group G is in T (κ) if and only if each neighbourhood
of the identity in G contains a normal subgroup of index strictly less than κ. Two
easily proved assertions (Propositions 3.2 and 3.3 of [7]) give some indication of
the central role played by the T (κ): a wide variety is generated by a set of topo-
logical groups if and only if it is a subvariety of some T (κ); and T (κ) is precisely
the wide variety generated by all topological groups of cardinality less than κ, for
each κ > ℵ0. In addition, the T (κ) play a major role as a tool in the proofs of
numerous results in the area (see [7] again, and, for example, [8, 9, 10]).

The division of the class of wide varieties into those which lie in some T (κ)
and those which do not is therefore a natural one. This paper contributes to
knowledge of both these subclasses. In the first case, we show that T (κ) is defined
by a set, rather than necessarily a proper class, of limit laws. It follows by a
theorem of [7] that every wide variety contained in a T (κ) is also defined by a set
of limit laws. We also show that the class of wide varieties lying in T (κ) is a set,
of cardinality at most 22κ . Our second group of results deal with those varieties
which lie inside no T (κ). We show that there is a proper class of such wide
varieties, and we exhibit general constructions which allow us to manufacture
certain such varieties. All these are defined by sets of laws, and we know of no
example of a wide variety which is not definable by a set of laws.

Definitions and notation.

Suppose that D is a directed set and V is any set. Then a limit law (with
respect to D and V ) is a formal expression [τd], where d runs through the elements
of D, and each τd is a term in the first order theory of groups which has V as its
(not necessarily countable) set of variables. Given a topological group G and a
variable valuation φ : V → G, such a law is satisfied (or holds) with respect to φ

in G if the net τd[φ] converges to the identity e of G, where for any term τ , τ [φ] is
the term assignment of τ in G with respect to φ; we may then write G |= [τd][φ].
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A law [τd] is satisfied (or holds) in G (or G models the law) if [τd] is satisfied with
respect to every valuation φ; we may then write G |= [τd].

We often adopt the equivalent view in which, given D and V as before, a limit
law is a formal expression [τd], where the τd are elements of the (abstract) free
group F (V ) on V , and in which the place of valuations φ is taken by maps φ of
the free basis V of F (V ) into G and their canonical extensions to homomorphisms
from F (V ) to G.

If Σ is a set of algebraic laws and Θ is a class of limit laws, then we denote by
sin(Σ ∪ Θ) the wide variety of topological groups which model all the laws in Σ
and Θ.

For other definitions and notations, we refer to [7] and others of the references
cited above. In particular, we refer the reader to [7] for a discussion of free
topological groups in wide varieties.

2. Inside the Wide Varieties T (κ)

We recall the definitions of three classes of wide varieties studied in [7].
The first is the family of wide varieties T (κ), which were discussed briefly

above. For κ an infinite cardinal, T (κ) is the class of topological groups in which
every neighbourhood of the identity e contains a normal subgroup of index less
than κ.

The second is a family of wide varieties B(κ) related in an obvious fashion to the
varieties T (κ). We recall (see [6]) that if κ is an infinite cardinal, then a uniform
space (X,U) is said to be κ-precompact if for each U ∈ U there is a set {xα} of
fewer than κ points in X such that X =

⋃

α U [xα]. We now define B(κ) be the
class of topological groups which are κ-precompact in their left uniformity.

Third, for any infinite cardinal κ, we define S(κ) to be the class of topological
groups in which each neighbourhood of e contains a (not necessarily normal)
subgroup of index less than κ.

It is straightforward to verify that each of these classes is a wide variety.
Clearly, we have T (κ) ⊆ S(κ) ⊆ B(κ) for all κ. Some relations between these
varieties were derived in [7]. (The assertion that (4) on page 324 of [7] follows
from the theorem of [5], however, is incorrect; but see Theorem 2.3 below.) We
begin by extending the work of [7]. This yields results which are of interest in
themselves, and which also lead to our proof that T (κ) is defined by a set of limit
laws.
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For technical reasons (see the proofs of Theorems 2.3 and 2.5, for example), it
is convenient to consider, in addition to T (κ), S(κ) and B(κ), the wide varieties
T+(κ) = T (κ+), S+(κ) = S(κ+) and B+(κ) = B(κ+).

An explicit description of the topology of the free topological group F (X) on
any topological space X was given by Tkachenko [15], and a simplified description,
generalized to the free topological group F (X,U) on any uniform space (X,U)
was given by Pestov [13]. A case of interest to us here is that of a uniform space
(X,U) with the property that U is closed under countable intersections. In the
abstract free group F (X), and for any U ∈ U , let j(U) denote the set of elements
{xy−1, x−1y : (x, y) ∈ U}. If we choose, for each w ∈ F (X), an arbitrary element
Uw ∈ U , we can represent the set of choices as a function Φ: F (X) → U , where
Φ(w) = Uw. For any such function Φ, we denote by N(Φ) the subgroup of F (X)
generated by

⋃

w∈F (X) w j(Φ(w))w−1. Then the result below follows easily from
the description of the topology of F (X,U) given in [13].

Theorem 2.1. Let (X,U) be a uniform space such that U is closed under count-
able intersections. Then the free topological group F (X,U) has as an open basis
at the identity the collection of subgroups N(Φ) of F (X), as Φ varies over all
functions from F (X) to U .

We recall a definition and a result from [7].
Let S be a set, and κ any infinite cardinal. Then following [7], we let U+

κ (S)
denote the coarsest uniformity on S which makes every map from S into all
uniform spaces of cardinality less than or equal to κ uniformly continuous. Equiv-
alently, U+

κ (S) is the coarsest uniformity on S which makes every map from S

into all topologically discrete uniform spaces of cardinality less than or equal to κ
uniformly continuous (where we call a uniform space topologically discrete if its
induced topology is discrete). It is easy to see that U+

κ (S) has a basis consisting of
all equivalence relations on S with κ or fewer equivalence classes. (The topology
induced on S by U+

κ (S) is discrete, though U+
κ (S) is only the discrete uniformity

if the cardinality of S is less than or equal to κ.) We note the following result
from [7] (a proof from the relevant definitions is straightforward).

Theorem 2.2. For any set S and any κ+-precompact uniform space (X,U), ev-
ery map from (S,U+

κ (S)) to (X,U) is uniformly continuous.

One of the results of [7] is a converse to this result: If S is of cardinality κ+,
and if every map from (S,U+

κ (S)) to (X,U) is uniformly continuous, then (X,U)
is κ+-precompact.
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Theorem 2.3. If κ is an infinite cardinal such that κℵ0 = κ, then

S+(κ) = B+(κ).

Proof. Fix κ satisfying κℵ0 = κ. We show first that F (S,U+
κ (S)) ∈ S+(κ), for

any set S.
We noted above that the basis elements of U+

κ (S) are equivalence relations
U ⊆ S×S on S with at most κ equivalence classes. Let {U1, U2, . . . } be a sequence
of such basis elements. Then clearly

⋂∞
n=1 Un is again an equivalence relation

on S, and has at most κℵ0 equivalence classes. Since by hypothesis κℵ0 = κ,
we therefore have

⋂∞
n=1 Un ∈ U+

κ (S). It follows that U+
κ (S) is closed under

countable intersections. Therefore, by Theorem 2.1, F (S,U+
κ (S)) has a basis at

the identity of open subgroups. Since (S,U+
κ (S)) is κ+-precompact, it follows by

a theorem of Guran [2] that F (S,U+
κ (S)) is also κ+-precompact, and we conclude

that F (S,U+
κ (S)) has a basis at the identity consisting of open subgroups of index

less than or equal to κ. Hence, as claimed, F (S,U+
κ (S)) ∈ S+(κ).

For any set S, we let Sd denote S equipped with the discrete topology. We
claim that F (S,U+

κ (S)) can be naturally identified with FB+(κ)(Sd). In fact, given
a (continuous) map φ : Sd → G, for any G ∈ B+(κ), Theorem 2.2 shows that φ
is uniformly continuous with respect to U+

κ (S), and the definition of F (S,U+
κ (S))

then yields an extension of φ to a continuous homomorphism on F (S,U+
κ (S)).

Since F (S,U+
κ (S)) ∈ S+(κ) ⊆ B+(κ), we can therefore make the claimed identi-

fication.
But for any G ∈ B+(κ), the natural continuous homomorphism

F (G,U+
κ (G))→ G

is surjective (where G on the left represents the underlying set of the topological
group G). Since F (G,U+

κ (G)) ∈ S+(κ), we therefore have G ∈ S+(κ), by the
definition of a wide variety. Therefore B+(κ) ⊆ S+(κ), completing the proof.

The main result of [5] is the following general structure theorem for topological
groups: If G is a topological group of density κ, then each neighbourhood of the
identity in G contains a subgroup of index less than or equal to κℵ0 . Clearly,
if G has density κ, then also G ∈ B+(κ) (but not necessarily conversely), and the
following corollary is therefore a (strict) generalization of the structure theorem.

Corollary 2.4. Let G be a κ+-precompact topological group. Then each neigh-
bourhood of the identity in G contains a subgroup of index less than or equal
to κℵ0 .
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Proof. We have G ∈ B+(κ) ⊆ B+(κℵ0), and since (κℵ0)ℵ0 = κℵ0×ℵ0 = κℵ0 , we
have G ∈ S+(κℵ0) by Theorem 2.3, and the conclusion follows.

We note in particular that if G is a κ+-precompact topological group with no
small subgroups, then |G| ≤ κℵ0 .

The example of the circle group T shows that, at least in the case κ = ℵ0, the
index given in the theorem cannot be lessened.

Theorem 2.5. Let κ be any infinite cardinal. Then S+(κ) ⊆ T+(2κ).

Proof. If G is any abstract group, and H a subgroup of index at most κ, then
a subgroup N , contained in H, and normal and of index at most 2κ in G, may
be constructed by an argument due essentially to Marshall Hall [3] (see also [4],
4.21(d)). In brief, let S(G/H) be the symmetric group on the set of right cosets
Hg of H in G. Then we define a homomorphism π : G → S(G/H), by setting
π(g)(Hg′) = Hg′g, for all g, g′ ∈ G. It is straightforward to check that the
kernel N of π lies in H, and that [G : N ] ≤ |S(G/H)| ≤ 2κ. (We can describe N
explicitly as the intersection of all conjugates of H.) The theorem clearly follows.

We can now prove the main result of this section.

Theorem 2.6. If κ is any infinite cardinal, then T (κ) is defined by a set of limit
laws.

Proof. Using the relevant definitions and earlier results, we have

B(κ) ⊆ B+(κ) ⊆ B+(κℵ0) = S+(κℵ0) ⊆ T+(2κ
ℵ0 ) = T ((2κ

ℵ0 )+).

Thus there exists a cardinal τ (= (2κ
ℵ0 )+) such that T (κ) ⊆ B(κ) ⊆ T (τ). By

Theorem 2.3 of [7], to show that T (κ) is defined by a set rather than a proper
class of laws, it suffices to find a cardinal µ such that G ∈ T (κ) if and only if every
subgroup H of G satisfying |H| ≤ µ is in T (κ). We claim that this statement
holds with µ = τ .

Thus, let G be a topological group such that every subgroup H of G satisfying
|H| ≤ τ is in T (κ). In particular, each such H is in B(κ). As noted in [7]
(following Corollary 3.12), a topological group is κ-precompact if and only if each
subgroup of cardinality exactly κ is κ-precompact, so it follows that G belongs
to B(κ), and hence to T (τ).

Let V be an arbitrary neighbourhood of the identity e in G. Then there
exists a normal subgroup N of G such that N ⊆ V and |G/N | < τ . Consider
the natural quotient homomorphism π : G → G/N . Choose a complete set S
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of coset representatives for N in G; clearly |S| < τ and π(S) = G/N . Let
H = 〈S〉, the subgroup of G generated by S. It is clear that |H| < τ , so by
our assumption, H ∈ T (κ). Since π : H → G/N is a continuous surjection, we
also have G/N ∈ T (κ). By Proposition 3.1 of [7], we therefore have G ∈ T (κ), as
required, and the proof is complete.

Corollary 2.7. Let V be a wide variety. If V is generated by a set of groups, or
if V is contained in any variety T (κ), then V is defined by a set of limit laws,
together with a set of algebraic laws.

Proof. By Proposition 3.2 of [7], a wide variety V is generated by a set of groups
if and only if V lies in T (κ), for some infinite cardinal κ. By Proposition 3.6 of [7],
a wide variety with either of these properties requires (in addition to its set of
algebraic laws) only a set of limit laws in addition to any chosen class of limit
laws defining T (κ); and the latter class, by the above theorem, may be taken to
be a set.

We note that the converse of this corollary is trivially false: the wide variety
of all topological groups is defined by the empty set of limit laws, but is not
generated by any set of topological groups.

It seems appropriate to record the following result at this point; though it does
not require Theorem 2.6 for its proof, it adds significantly to our knowledge of
the structure of T (κ).

Theorem 2.8. For any infinite cardinal κ, there is set of at most 22κ wide sub-
varieties of T (κ).

Proof. Proposition 3.6 of [7], referred to above, shows not merely that each
wide subvariety of T (κ) requires only a set of limit laws in addition to the laws
defining T (κ), but that, independent of the subvariety, there is an upper bound
on the cardinalities of the directed sets involved in the additional laws, and that
the variables in those laws may be assumed to belong to a fixed set. It follows
that the class of wide subvarieties of T (κ) is a set, and the specific bound above
follows from calculation of the relevant cardinalities.

We do not know whether the above bound is best possible, nor whether the
class of (not necessarily wide) subvarieties of T (κ) is a set.

3. Outside the T (κ)

A major open question on wide varieties is whether every wide variety is defin-
able by a set of limit laws (together with a set of algebraic laws). By the results of
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the previous section, any wide variety which requires a proper class of limit laws
cannot be contained in any T (κ). We have no example of a wide variety requiring
a proper class, but we explore, in this section, the class of wide varieties outside
the T (κ).

Clearly any abstract variety of groups G defines a full wide variety of topological
groups [14]—the class of all topological groups whose underlying abstract groups
are in G. The 2ℵ0 distinct abstract varieties [12] therefore give rise to 2ℵ0 distinct
full wide varieties of topological groups, and it is easy to see that none of these
lies in any T (κ). It is of interest to seek other wide varieties not lying in the T (κ),
and in particular to determine whether they form a proper class.

We say that a limit law [wd], with index set D, is eventually trivial if there
exists d0 ∈ D such that wd = e for all d ≥ d0.

Proposition 3.1. If Λ is a class of limit laws such that the wide variety of all
topological groups is sin(Λ), then each law in Λ is eventually trivial.

Proof. Let λ be a law in Λ, and suppose that λ uses τ variables, for some
cardinal τ . Let F be a discrete free group of rank τ . Then the distinct words
of λ may be mapped injectively into F under a suitable variable valuation, and
the fact that the resultant net in F converges to e implies that λ is eventually
trivial.

More generally, let G be any abstract variety of groups. Then we say that a
limit law λ = [wd], with index set D, is eventually G-trivial if there exists d0 ∈ D
such that the algebraic law wd = e is satisfied in G for all d ≥ d0. A similar
argument to that above then shows that if Λ is a class of limit laws such that
the full wide variety of topological groups over G is sin(Λ), then each law in Λ is
eventually G-trivial.

In the proof of the next theorem, we require the existence of a strictly increasing
sequence {Vn} of varieties of abstract groups. Examples of such sequences are
given by taking Vn to be (i) the class of nilpotent groups of class n, or (ii) the
class of groups satisfying the algebraic law xn! = e.

Theorem 3.2. There exists a wide variety V of topological groups such that :

(i) V is defined by a single limit law ;
(ii) V contains a strictly increasing countable sequence of full wide varieties;

(iii) V is not the wide variety of all topological groups;
(iv) the variety of abstract groups underlying V is the variety of all groups; and
(v) V does not lie in T (κ), for any cardinal κ.
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Proof. Let {Vn : n ∈ N} be a sequence of varieties of abstract groups, such that
Vn ⊆ Vn+1 and Vn 6= Vn+1, for each n ∈ N. Choose an algebraic law wn = e

which is satisfied in Vn but not in Vn+1, for each n. Consider the limit law
λ = [wn] (indexed by the natural numbers), and let V be the wide variety of
topological groups defined by this single law. Then (i) holds by definition. For
any n, the algebraic law wm = e holds in Vn, for all m ≥ n, showing that λ
holds in any topological group whose underlying abstract group is in Vn, and
therefore proving (ii). We have (iii), by Proposition 3.1, since wn must clearly
be non-trivial for each n. Also, all indiscrete topological groups are in V, so (iv)
follows. Lastly, (v) follows by our earlier remarks about full wide varieties.

Theorem 3.3 below constructs a proper class of wide varieties none of which
lies in any T (κ), and the particular varieties constructed form a strictly increasing
transfinite sequence, indexed by the cardinal numbers. In view of this argument,
and the proof of the previous theorem, it seems worth noting the following general
observation on increasing chains of wide varieties.

Let τ0 be a cardinal, and suppose that for all cardinals τ < τ0, wide varieties Vτ
are chosen in such a way that τ ≤ τ ′ implies Vτ ⊆ Vτ ′ . Then of course

⋃

τ<τ0
Vτ

is not in general a wide variety, being closed under the formation of continuous
homomorphic images and subgroups, but not in general under formation of prod-
ucts. However, if we have a transfinite increasing sequence of wide varieties Vτ
for every cardinal τ , then

⋃

τ Vτ is again a wide variety: closure under taking of
products follows because any set of groups in

⋃

τ Vτ lies in some single variety Vτ
in the sequence.

Examples of such sequences are of course provided by the varieties T (κ), S(κ)
and B(κ) discussed earlier, and another by the varieties Vκ defined in the proof
of the following theorem. (In each of these cases, the union is simply the variety
of all topological groups.)

Theorem 3.3. There is a proper class of wide varieties which do not lie in any
of the varieties T (κ).

Proof. For any infinite cardinal κ, let Vκ be the wide variety generated by all
abelian topological groups and a single discrete free group F (κ) of rank κ. It is
easy to see that (i) Vκ does not lie in T (κ′), for any cardinal κ′, (ii) the union
of the Vκ, for all cardinals κ, is the wide variety of all topological groups, and
(iii) the variety of abstract groups underlying Vκ is the variety of all groups (by
Theorem 15.4 of [11], for example). We shall show that Vκ contains no discrete
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free group of rank greater than κ, so that the Vκ form a proper class of distinct
wide varieties.

Let F be a discrete free group in Vκ. Then for some cardinal τ and some abelian
topological group A, and for some subgroup H of the product G = A × F (κ)τ ,
there exists a continuous homomorphism φ from H onto F . Without loss of
generality, we may take τ to be infinite. Suppose that F is generated freely
(algebraically) by a subset X = {xα}. It is easy to see that the choice of a set
of arbitrary preimages {gα} in G of the {xα} is a set of free generators for the
subgroup of G that it generates, and that this subgroup maps bijectively to F

under φ. Since φ is continuous and F is discrete, it follows that H, and hence G,
contains a discrete free subgroup of the same rank as F . Thus, without loss of
generality, we may take F to be a discrete free subgroup of G.

Let N be a basic neighbourhood of the identity in G which intersects F only
in {e}. Then we may write G = A × B × C, where B is a finite product F (κ)n,
for some integer n, and C = F (κ)τ , and where for some neighbourhood U of the
identity in A, we have N = U × {e} × C and N ∩ F = {(e, e, e)}. Let π be the
natural projection from A×B×C onto A×B. If (a1, b1, c1) and (a2, b2, c2) are in F
and π(a1, b1, c1) = π(a2, b2, c2), then (a1a

−1
2 , b1b

−1
2 , c1c

−1
2 ) = (e, e, c1c−1

2 ) ∈ N∩F ,
and so c1 = c2. Therefore π is bijective on F , and so A × B contains (at least
algebraically) a free subgroup F ′ of the same rank as F .

Consider the projection π′ from A × B onto B. Clearly K = kerπ′ is al-
gebraically isomorphic to the abelian group A, and so kerπ′ ∩ F ′ is an abelian
subgroup of F ′, and is therefore either trivial or infinite cyclic. Hence π′(F ′) has
the same (infinite) cardinality, and therefore rank, as F ′, and this is bounded by
the cardinality κ of B. This completes the proof.
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[12] A. Ju. Ol′šanskĭı, ‘The finite basis problem for identities in groups’ (in Russian), Izv. Akad.

Nauk SSSR Ser. Mat. 34 (1970), 376–384.

[13] V. Pestov, ‘Neighbourhoods of unity in free topological groups’, Moscow Univ. Math. Bull.

40 (1985), 8–12.

[14] W. Taylor, ‘Varieties of topological algebras’, J. Austral. Math. Soc. (Series A) 23 (1977),

207–241.

[15] M. G. Tkachenko, ‘On topologies of free groups’, Czech. Math. J. 33 (1984), 57–69.

Received July 8, 1997

(Sidney A. Morris) School of Mathematics, University of South Australia, Mawson

Lakes, S.A. 5095, Australia

(Peter Nickolas) School of Mathematics and Applied Statistics, University of Wol-

longong, Wollongong, NSW 2522, Australia

(Vladimir Pestov) School of Mathematical and Computing Sciences, Victoria Uni-

versity of Wellington, PO Box 600, Wellington, New Zealand


