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A topological generalization of the Higman—Neumann—
Neumann theorem

Sidney A. Morris and Vladimir Pestov
(Communicated by J. S. Wilson)

Abstract. We generalize in a substantial way the celebrated result by Graham Higman, Bern-
hard Neumann and Hanna Neumann on embedding countable groups into 2-generator groups
as follows: every countable topological group is isomorphic to a topological subgroup of a
topological group algebraically generated by two elements. A number of corollaries are de-
rived. In particular, we characterize those topological groups embeddable into groups with two
topological generators: they are the groups covered by countably many translations of each
neighbourhood of the identity and having weight at most ¢. In particular, they include all sep-
arable topological groups.

0 Introduction

A famous result of Graham Higman, Bernhard Neumann and Hanna Neumann [9]
asserts that every countable group is isomorphic to a subgroup of a 2-generator
group. Their proof uses free products with amalgamations. Later Bernhard and
Hanna Neumann gave a proof using wreath products [14]. Subsequently the latter
proof was converted into a very transparent form, and there is an excellent exposition
by Fred Galvin in the American Mathematical Monthly [5]. (See [6] for even more
refined results using the same construction.)

Here we show that the proof as presented by Galvin can be reconstructed at the
level of topological dynamics so as to lead to the following general result for count-
able topological groups.

Theorem A. Let G be any countable topological group. Then there exists a topological
group H which has G as a topological subgroup and which is algebraically generated by
some a,b e H.

The original Higman—Neumann-Neumann theorem is recovered in the special
case where the original group G has the discrete topology.
As a direct corollary of Theorem A, one deduces the following new result: every
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separable topological group is isomorphic to a topological subgroup of a group
having two topological generators (that is, having an everywhere dense 2-generator
subgroup). Bearing in mind that not every topological subgroup of a group with two
topological generators is separable, we go further to obtain a complete description of
those topological groups embeddabe into groups with two topological generators
or, equivalently, into separable topological groups (Theorem B). A number of other
corollaries are derived, including a new description of the important class of ;-
precompact topological groups.

The second author is thankful to the Mathematical Analysis Research Group
(MARG) for financial support and warm hospitality extended during his visit to the
University of Wollongong in November—December 1996.

1 Conventions and preliminaries

All topological spaces (including those of topological groups) in this note are as-
sumed to be Tychonoff (completely regular Hausdorff), and all uniform spaces
(X,%) separated ("% = Ax). A good reference on uniform structures and com-
pletions of topological groups is [16].

Given a family {(X,, %) : x € A} of uniform spaces, we denote by @), _ , X, their
coproduct, that is, the disjoint union of all X, equipped with the finest uniformity
inducing the given uniformity on each X,. A basis of the uniformity on ), _, X, is
formed by all entourages of the form Ui e Ux as Uy € U,, where each X, x X, is
canonically identified with a subset of the Cartesian square of (P), _ , X,. A mapping
i @a <4 Xz — Y, where Y is any uniform space, is uniformly continuous if and
only if is every restriction f | x, : X, — Y, a € 4 is uniformly continuous.

The full symmetric group of a set X is denoted by Sym(X). Any action 7: G —
Sym(X) of a group G on a set X is interpreted as an action on the right, that is, we
associate with it a map X x G — X, (g,x) — 74x = xg. The disjoint union X of a
family {X, : x € A} of sets equipped with an action of a group G itself admits a nat-
ural action of G. For the basic concepts of dynamics, see e.g. [19].

The group Aut(X) of all automorphisms of a uniform space X = (X, %) is always
equipped with the topology of uniform convergence, of which a neighbourhood basis
at the identity is formed by the sets

U ={geAut(X): (x,xg) € U for all xe X},

where U € %. The topology of uniform convergence is a Hausdorff group topology.
It is well known that every topological group G is isomorphic to a topological sub-
group of the group of the form Aut(X) for a suitable uniform space X in fact, one
can always choose as X a compact space with its unique compatible uniformity (see
[17]), Theorem 2). In our argument to follow the particular form of X plays no role
whatsoever.
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2 Proof of Theorem A

Our proof generally follows the argument of Galvin [5], with topological and uniform
structures incorporated at every stage.

Index elements of G with odd positive integers: G = {g1,93,...,J2k+1,- - -}- Choose
a uniform space X and an effective (i.e. faithful) action 7 of G upon X such that the
topology of uniform convergence inducéd on G via the monomorphism 7: G —
Aut(X) coincides with the original group topology.

We make the product Z x Z x X into a uniform space by identifying it with the
coproduct of countably many copies of the uniform space X indexed with elements of
X

ZxZxX= @ {(mn)}xXx}
(mn)eZxZ

Now we define permutations ¢ and b of Z x Z x X in exactly the same fashion as
Galvin does: (m,n,x)a = (m+ 1,n,x), and

(mn+1,x) ifm=0
(m,n,x)b =< (m,n,xgy,) if misodd, m>0,n=0,

(m,n,x) otherwise.

Both @ and b are uniform automorphisms of Z x Z x X, rather than just per-
mutations of it. This follows from the identification of the latter space with the
coproduct of a family of copies of X and the fact that the restriction of both a or 5
and their inverses to any copy of the uniform space X of the form {(m,n)} x X is
either an automorphism of this copy of the form (m, n, x) — (m,n, xg%,), withe = +1,
or else a canonical isomorphism of it with a piece of the form {(m + 1,n)} x X or
{(mn+ 1)} x X.

Set b; = a’ba~" and §; = b;b~1b;7'b for all i = 1,3,5,.... All b;, and therefore all
d;, are uniform automorphisms of Z x Z x X, being finite compositions of such
maps.

By Galvin’s calculations,

(Oloux)gi = (Ozoﬁxgr') (1)
and

(m,n,x)g; = (m,n,x) whenever either m # 0 or n # 0. (2)
Algebraically, this implies that the correspondence
i:Go3gm— e Ant(Z x Z x X)

establishes an isomorphism of G with a subgroup H of Aut(Z x Z x X), algebrai-
cally generated by a and 5.
A closer look at (1) and (2) reveals that the action i of the group G upon the
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uniform space Z x Z x X is the direct sum of the original action 7 of G upon the
uniform subspace X = {(0,0)} x X and the trivial action of G upon the rest,
[(Z x Z)\{(0,0)}] x X. In other words, for each g € G the restriction of the g-motion
ig:ZxZxX —ZxZxX to{0,0)}xX coincides with 7,, while i|¢(, m1x =
Id{(n )}« x Whenever (m,n) # (0,0). Given any element U of the uniform structure of
ZxZx X, any ge G and any x € X, one has therefore (x,i,x) € U if and only if
(x,74x) e UN (X x X).

It follows immediately that the topology induced on G via the monomorphism
i: G Aut(Z x Z x X) coincides with the topology induced on G via the original
action 7 : G — Aut(X) and therefore with the original topology on G. From here
it follows that G is a topological subgroup of the topological subgroup H of

Aut(Z x Z x X) generated by a and b, as required.

3 Applications

A subset X of a topological group G topologically generates G, or forms a set of
topological generators, if the subgroup (X algebraically generated by X is every-
where dense in G. The following is a new result.

Corollary 1. Every separable topological group embeds, as a topological subgroup, into
a topological group with two topological generators.

Proof. Let G be a separable topological group. Then G contains a countable every-
where dense subgroup F. Embed F into a 2-generator topological group A using
Theorem A. Since F lies inside H as a topological subgroup, the completion Fof F
with respect to the two-sided uniformity is canonically isomorphic with a topological
subgroup of the completion of H, and clearly H is topologically generated by two
elements. Because of the well-known uniqueness of the completion of a topological
group with respect to the two-sided uniformity (see [16]), whenever a topological
subgroup F is everywhere dense in a topological group G, the completions Fand G
are canonically isomorphic. Therefore G embeds into F =~ G as a topological sub-
group. As a consequence, G embeds into the 2-generator topological group H.

Remark 1. Corollary 1 shows that the topological group RR™ can be embedded in
a topological group with two topological generators. At the same time, R™ itself
requires o topological generators, as IR”, which requires n + 1 generators, is a
topological quotient group for each » (see [2]).

In general, a topological subgroup of a separable topological group need not
be separable ([7]; [4], Theorem 3.3), apart from the locally compact case ([4]; [3],
Theorem 3.14), and therefore Corollary 1 is not a final result. We now proceed to
obtain a complete description of topological subgroups of groups with two topo-
logical generators.

A topological group G is called x-precompact (see [13]), where « is an infinite car-
dinal, if G can be covered by fewer than « translates of any non-empty open subset.



A topological generalization of the Higman—Neumann—Neumann theorem 185

Equivalently, G is x-precompact if and only if it is isomorphic with a topological
subgroup of the direct product of a family of topological groups of weight less than x.
The class of all x-precompact topological groups is closed under continuous homo-
morphisms, topological subgroups and infinite direct products. In particular, No-
precompact groups are the usual precompact topological groups, while (x+)-
precompact groups were studied in [8] under the name of x-bounded groups; see also
[1]. Every Lindelof (in particular, every compact) and every separable topological
group is ¥;-precompact (ibid ). (Our terminology agrees with that in [12].)

The following result describes subgroups of separable (and of topologically 2-
generated) topological groups in easily verifiable terms.

Theorem B. For every topological group G the following are equivalent:

(i) G embeds as a topological subgroup into a topological group with 2 topological
generators;

(1) G embeds as a topological subgroup into a separable topological group;

(iil) G is an Ny-precompact group of weight at most c.

Proof. The implication (i) = (ii) is trivial, (ii) = (i) is just Corollary 1, and (ii) = (iii)
follows from the well-known facts that every separable topological group is N;-
precompact [1, 8] and has weight at most c.

Now assume (iii). Then G embeds, as a topological subgroup, into the direct
product of a family of topological groups with countable base; without loss of gen-
erality the cardinality of such a family can be assumed at most ¢. The Tychonoff
product of such a family is separable by the famous Hewitt—Marczewski—Pondiczery
theorem ([10], Theorem 11.2), which establishes (ii).

Remark 2. It is instructive to compare Theorem B to the following result [11]: every
compact connected group of weight at most ¢ has 2 topological generators. Notice
that not every topological group of weight at most ¢ embeds into a group with two
topological generators: Theorem B tells us that no discrete group of cardinality ¢ is a
topological subgroup of a separable group because it is not ¥ -precompact.

In general, the 2-generator topological group H constructed in the proof of Theo-
rem A need not be metrizable even if G is metrizable because the coproduct of in-
finitely many non-discrete uniform spaces is never metrizable. Nevertheless, weaken-
ing the topology on H by means of a well-established technique [1], one can prove the
following.

Corollary 2. Every countable metrizable group is isomorphic to a topological subgroup
of a metrizable group topologically generated by two elements.

Proof. Since G is metrizable, it is possible to choose a countable prefilter y of
neighbourhoods of the identity in H whose restrictions to G form a base for the
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neighbourhood filter. Without loss of generality one can assume first that y contains
all cofinite subsets of H, and then that for every V ey there is a W ey with
W-lW < V. Since H is countable, the minimal prefilter 7 on H containing y and
invariant under inner automorphisms is countable as well. Now it is easy to see that ¥
satisfies all the usual properties (see e.g. [3], 1.11) of a neighbourhood basis at the
identity for a Hausdorff group topology T on H, which is metrizable (since 7 is
countable), clearly contained in the original topology of H, and induces the original
topology on G.

Corollary 3. Every topological group of countable weight is isomorphic to a topological
subgroup of a group of countable weight topologically generated by two elements.

Proof. It is enough to choose a countable everywhere dense subgroup F of the group
G of countable weight, then to embed F into a 2-generator metrizable group L using
Corollary 2 and to observe first that G is isomorphic to a subgroup of the completion
L (as in the proof of Theorem B), and then that every separable metrizable group (in
particular L) has countable weight (see e.g. [3], Theorem 3.5.i).

In fact, Corollary 3 can be further strengthened.

Corollary 4. There exists a topological group G of countable weight topologically
generated by two elements such that every topological group of countable weight is
topologically isomorphic with a subgroup of G.

Proof. The group of all self-homeomorphisms of the Hilbert cube Q = I™ forms a
universal topological group with countable base; see [18]. Applying to Homeo Q our
Corollary 3 yields the desired result.

The following strengthens an earlier result from [15], originally established for
zero-dimensional compacta instead of Cantor cubes.

Corollary 5. For a topological group G the following are equivalent:

(i) G is isomorphic to a topological subgroup of a topological group topologically
generated by a Cantor cube D,

(ii) G is Wy-precompact.

Proof. It is well known that a topological group topologically generated by a com-
pact subset is N;-precompact; see [1], [8]. Going in the opposite direction, if G is N;-
precompact, then it embeds as a topological subgroup into the direct product
[1,<: G. of a suitable family of groups with countable base; see again [1], [8]. For
each o < 7, fix a topological group H, topologically generated by a 2-element subset
{ay, by} and containing G, as a topological subgroup. The topological group [,.,
H, contains G as a topological subgroup and is topologically generated by a subset
[L.<.{ax,b.} homeomorphic to D".
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