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ABSTRACT. An LCA group .G can be “manufactured’’ from the
group of reals, via repeated operations of taking quotients, sub-
groups and (arbitrary) cartesian products if and only if G is com-
pactly generated.

1. Introduction. It is well known that every compactly generated LCA
group can be “manufactured” from the group R of reals using (repeatedly)
the operations-of taking quotients, subgroups and cartesian products. It 1s
shown here that these are the only LCA groups which can be so manu-
factured. _

In the terminology of [1], [2], [S], [6] and [7] this means that an LCA
group 1s in the variety generated by the reals if and only if it is compactly
generated.

2. Preliminaries.

DEFINITION. A class V of topological groups is said to be a variety if
it is closed under the operations of taking subgroups, quotient groups,
arbitrary cartesian products and isomorphic images.

DErFINITION. Let G be a topological group and V(G) be the intersection
of all varieties containing G. Then V(G) 1s said to be the variety generated
by G.

NoTtAaTION. If Q is a class of topological groups, let (i) S(€2), (ii) Q(L2),
(ii1) C(£2) and (iv) D(€2) denote the class of all topological groups iso-
morphic to (i) subgroups of topological groups in £, (ii) quotient groups
of topological groups in €2, (iii) cartesian products of families of topological
groups in €2, and (iv) products of finite families of topological groups in £2,
respectively. _

The following theorem is proved in [1].

THEOREM. Let G be any abelian topological group and let E be a Haus-
dorff group in V(G). Then E € SCQ D{G}.

Received by the editors February 235, 1971.
AMS 1970 subject classifications. Primary 22B035; Secondary 20E10.
Key words and phrases. Compactly generated locally compact abelian groups, variety

of topological groups.
(© American Mathematical Society 1972

290



LOCALLY COMPACT ABELIAN GROUPS 201

3. The theorem. We begin with an alternative proof of a special case of
Theorem 2.6 of [8)]. (See Corollary 2 below and Corollary 3.22 of {3].)

LEMMA 1. Let H be a compactly generated LCA group. If G is a discrete
subgroup of H, then G is finitely generated.

PrROOF. Let Y be the subgroup of G consisting of all elements of finite
order and X be the complement of Y. We will show that both Y and the
group generated by X, gp{X}, are finitely generated, and hence so too is G.

By Theorem 9.14 of [4], H is topologically isomorphic to R*XZ°X F,
where Z is the discrete group of integers, Fis a compact group and a and b
are nonnegative integers. Let S be any finite subset of X. Then the group
generated by S is Z7, for some nonnegative integer r. By Theorem 9.12 of
[4], r=a+b. That is, any finitely generated subgroup of gp{X'} is generated
by a+b elements. Thus gp{X} is finitely generated.

Let p,, p, and pg be the natural projection mappings of H onto R%, Z*
and F, respectively. Let y be any element in Y. Then, since p is of finite
order, p,(y)=e, and p,(y)=e,, where ¢, and e, denote identity elements.
Thus py(Y) is topologically isomorphic to Y. That is, ps(Y) is a discrete
subgroup of F. Since F is compact, this implies p3(Y), and hence Y, is a
finite set. The proof 1s complete.

LEMMA 2. Let G be adiscrete group in V(R). Then G is finitely generated.

PrROOF. By the theorem in §2, G € SCQ D{R}. Using Theorem 9.11 of
[4], we see, then, that G is a subgroup of a product | [;.; F;, where each
F; 1s topologically isomorphic to R* x T™, T is the circle group and n, and
m; are nonnegative integers.

Stnce G 1s discrete, there exist «y, * < -, «, in /such thate=[ .., O,NG,
where e 1s the identity element of G, each O, is an open set in F;, and for
i#w«; for some je{l,---,n}, O;=F, Let F=]1];_, Fa;’ and p be the
natural projection mapping of | [,.s F; onto F. Clearly, p(G) is topologi-
cally isomorphic to G. Thus p(G) is a discrete subgroup of F. However, by
Lemma 1, this implies p(G), and hence G is finitely generated.

THEOREM. Let G be an LCA group in V(R). Then G is compactly
generated,

ProoF. By Theorem 2.4.1 of [9], G contains an open subgroup H,
where H is topologically isomorphic to R” X F, for some nonnegative
integer n and compact group F.

Then the quotient group G/H is discrete and is in V(R). Therefore, by
Lemma 2, G/H is finitely generated. Thus G is an LCA group with a com-
pactly generated subgroup H such that G/H is compactly generated. By
5.39 (i) of [4], this implies G is compactly generated.
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COROLLARY 1. Let H be a compactly generated LCA group and let G
be an LCA group in V(H). Then G is compactly generated.

COROLLARY 2. Let G be a subgroup of an arbitrary product of compactly
generated LCA groups. If G is locally compact, then it is compactly generated.

COROLLARY 3. Let G be a subgroup of an arbitrary product of copies of R.
If G is locally compact then it is topologically isomorphic to R*xZ®, for
some nonnegative integers a and b.
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Professor U.N. Muhin has pointed out that the proof of Lemma 1 is
wrong. ‘‘That is, any finitely generated subgroup of gptX} is generated by
a + b elements. Thus gpiX} is finitely generated’’ is an incorrect deduc-
tion! As the lemma is a special case of Theorem 2.6 of [8], it is, of course,
correct. [t is possible to replace the proof we gave with a similar, but
correct, one. However, a sneaky way to see that any closed subgroup of a
compactly generated LCA-group is compactly generated is by observing that
an LCA-group is compactly generated if and only if its dual group 1s a Lie
group, and using the fact that any quotient of a Lie group is a Lie group.
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