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Ahstract. The main result 1 1he theorem: Assume that the set of nontsdvial groups (G} .es
containg either three groups or two groups of which one has order at least 3. Then the free
amalgam ' of the groups G ., it € I, can be embedded in a group G = gp{Q2'} in such a way
that for each fixed cardinal 8 < |G|, G admita a non-discrete Hausdorff topology such that 1)
G is a (-dimensionz] topological group; 2) every neighbourhood is of cardinality |G|; 3} if &
subgroup M of G is comjugate to a subgroup of G, for some p <« / or M iz a finite extension
of a cyclic group, then M is discrete; 4) every subgroup of G of cardinality ¥ < B is discrete;
and 5) if B is finite, then G may be chosen to be metrizuble. This result depends on the method
of A.Yu. Ol’shanskii. A special case of the theorem, logether with applications, is given in [4].

1. The main result

The structure of locally compact topological groups, especially compact groups, is
reasonably well understood. Outside the class of locally compact groups, the stan-
dard techniques, for example using Lie groups, do not apply. Algebraic methods such
as the method of graded diagrams developed by Ol’shanskii in [10] and central ex-
tensions of diagrammatically aspherical groups (see, for cxample, [10, Chapter 10]),
seem to be very useful in understanding the structure of general topological groups.
Some applications of these methods have already been used in topological group the-
ory. [k is sufficient to mention the following results: 1) Ol'shanskii, [8], settled the
famous Markov problem about the existence of a countable non-topologizable group,
that is, a couvntable group which admiis the discrete topology only; 2) Zyabrev and
Reznichenko, [11], constructed an example of a (path-) connected topological group
in which all elements in some neighbourhood of the identity satisfy a law (namely,
x" = 1) which is not satisfied in the whole of the group; 3} the authors, together with
Hofmann and Qates-Williams, obtained in [3] examples of non-abelian non-discrete
locally compact Hausdorff groups in which every nontrivial closed subgroup is open.

The method of OF'shanskii was extended hy the second author in [SH7] to dia-
grams over the free products and applied to quotient groups of free products. Asa
result, embedding schemcs of an arbitrary set of groups into a simple infinite group
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with a “well-described” lattice of subgroups and a given outer automorphism group
were established in [6] and [7]. The first step in introducing this technique to topolog -
ical groups was made by tha authors in [4), where using tha Ol’shanskii method, any
set of discrete groups without involutions was embedded in a non-discrete Hausdorff
topological group with many discrete subgroups. One of the applications of this resuit
is the existence, for each pogitive integer n, of a non-discrete Hausdorff topological
group of cardinality 8, with no proper subgroups of tha same cardinality and with
each proper suhgroup discrete.

The main result of [4] appeared there without the proof, because of its size, com
plexity and extensive use of algebraic methods, In this paper we not only provide the
proof, but also give a generalization of the results in [4] to the class of all discrete
groups.

For the statements, a few definithins are required.

Definition 1.1. The free amalgam Q' of an arbitrary set of groups {G , ],.¢7 is defined
tobetheset| ), ., G, with G, ™ G, = | whenever 1 # v.

Definition 1.2. The mapping g : Q' — G is a (topological) embedding of the free
amalgam Q! of a set of (topological) groups G, i € 1, into a (topological) group G

The main result of this paper is the following theorem.

Theorem 1.3. Assume that the set of nontrivial groups |Gy },.c 1 contains elther three
groups or two groups of which one has order at least 3. Then the free amalgam Q' of
the groups Gy, i € I, can be embedded in a group G = gp{Q'} in such a way that
for each fixed cardinal B < |G|, G admits a non-discrete Hausdoff topology such
that

1y G is a O-dimensional topological group;
2) every neighbourhood is of cardinality |G|;

3) if a subgroup M of G is conjugate to a subgroup of G, for some . € I or M
is a finite extension of a cyclic group, then M is discrete;

4) every subgroup of G of cardinality y < B is discrete;
5) if B is finite, then G may be chosen to be metrizable.

Now we briefly describe the contents of the paper. 1 §2 we present a general em-
bedding construction which fulfills the conditious of Theorem 1.3, Some applications
of Theorem 1.3 will be discussed in §3. Topologization of the resulting group G in
Theorem 1.3 involves the study of the products of “long” and “short™ words over the
alphabet Q!, where every “long” word is J-aperiodic for small values of {, which is
heavily based on Ol'shanskii’s technique developed in [10]. §4 contains the proof of
Theorem 1.3, except for the proofs of the technical I emma 4.2 and 1.emma 4.9, which
are relegated to §5 so that §4 will be accessible to more readers. The last section, §5,
is devoted to thesc two lemnmas.
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2. Construction of the group G

Ag in [10], we introduce the positive parameters
a’ ﬁ’ y! 8’ s! ;! n! ‘!

where all the parameters are arranged according to “height”, that is, the small positive
value B is chosen after o, y after 8, and s0 on. Qur proofs and some definitious
are based on a system of inequalities involving these parameters. The values of the
parameters can be chosen i such a way that all the inequalities hold. We then use the
following notation:

ar=1/2+a, pr=1-B, yr=1=y, k=8, d=q, n=11.

We assume that 2 is an intcger.

Let Q! be the free amalgam of the groups G, u € /, and Q = Q' \ {1}. We
define G (1) to be the free product of the groups G, g € /, and set D; = @, Assume,
by induction, that we beve defined the set of relators D;_, i > 2, and define

Gi -DH=(GMI|R=1,Re€D; 1).

A word X (over the alphabet Q) is a minimal word in rank { — 1 if it follows from
X=YinG¢ — 1) that ;X < |¥, where |Z, denotes the length of the word Z. A
word Y is called free in rank i — 1 if ¥ is not conjugate in rank i — 1 to an element
of Q!, that is, to an image in G(i — 1) of an element of one of the free factors G,.
A non-empty word Z is said to be simple in rank i — 1 if it is free inrank i — 1, not
conjugate in rank § — 1 (that is, in G(i — 1)) te a power of a shorter word and not
conjugate in rank i — | to a power of a period of rank k < §.

Now let P; denote a sci of words of length § which are simpie in rank i — 1 with the
property that A, B € P, and A 3 B ("=" means letter-for-letter equality of words of
the same length) implies that A is not conjugateinrank i 110 B8 or B~!, The words
in P; are called periods of rank i. A special role in the construction of the group G
will be played by the sets P of all periods of rank i which are not equal inrank / — 1
to a product of rwo involutions (of G({ — 1)}. By the definition of the group G({i — 1),
P, = P, if all groups G,,, i € I, are without involutions.

The set of relators S; of rank i is constructed as follows. First, we inclnde in §;
words of the form A™4 (relators of the first type) for certain words A € P/, where the
odd number n 4, in general, depends on A and n4 > hni, and call any relation

A™ =1 6]

a defining relation of the first type of rank i.
Secondly, given A < P/, we also include in S; a sct of words of the form

Ti A", .. Ty A™ (relators of the second type) and call any relation
NA"HA"™ | T,A™ =1 @
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a defining relation of the second type (n1, ... ,ny, depend on A and on (2)). Every
relator of the second type must satisfy conditions R1-R7 of [10, pp. 271-272], and
the following additional condition holds:

R8. ng > niforeachk=1,...,A.

Foreachi > 2. weset D; = D;_; U §:, and the group G (#) is defined by its
presentation:

G(i) = (G(DIIR=1; R € Dy). (3
Finally, we define '

G=(GWIR=LReD=| D).
iz

Many embedding constructions based on the scheme given above are particular
cases of the schemes in [6] (for groups without involutions) and [7] (in the general
case). Here we give a consequence of these embedding schemes which will be used
in the next section.

Let {G,}.¢: be a set of nontrivial groups, Q! the free amalgam of the groups G,
@ € I, and also let @ = Q' \ [1].

Definition 2,1, A mapping £ : 28\ (#} > 2% is called generating on the set Q if
the following conditions hold:

1) f C C G, forsome u € I, then f(C) =gp[C}\ [1};

2) ifC & G, foreach ¢ € I and C = {a, b} C Q, where @ and b are involutions
(such a subset of Q will be called dihedral), then f(C) =— C;

3) if C is a finite non-dihedral subset of Q@ and C € G, for each u € I, then
F(C) = B, where B is an arbitrary countable subset of £ such that C € B and
if D is a finite subset of B, then f () C B,

4) if C is an infinite subset of Q, then f(C) = |J 5 F(A), where T is the set of
all finite subsets of C.

For example, a generating mapping f on £ can be defined in the following way:
if C € 22\ {0} and C = J,; Cy, Where C,, = CN Gy, p € I, then f(C) =
(Uper gp(CuI} \ {1} (we assume that gp{C,,} = {1} if C, = ). It is obvious that
in order to define a generating mapping f on £, it is sufficient 10 do it only on finite
non-dihedral subsets C of Q suchthat C € G, foreach p € 1.

The following resnlt follows immediately from Theorem B in [6] and Theorem B
in [7].

Theorem 2.2, Let {G . },cr be an arbitrary set of nonirivial groups containing either
three groups or two groups of which one has order at least 3. H an arbitrary (for
example, trivial) group, Q' the free amalgam of the groups H and G, it € 1, and les
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f be an arbitrary generating mapping on Q@ = Q' \ {1). Then the free amaigam Q!
can be embedded in a group G = gp{§l} such that

1) the free amaigam of the groups G, is embedded in a simple normal irfinite
subgroup L of G and G is the semidirect product of H and L;

2) every nontrivial subgroup of L is cyclic or infinite dihedral (if one of the groups
Gy.p € I, or H has involutions), or conjugate in G to a subgroup L¢ =
RN L, where Re = gp{C} for some C € 282\ 2H g ¢ QN R¢ if and
onlyifa € f(C), and if C € G, for each . € 1, then Lc is simple and
L¢ = gp{chab e, b,c € f(C)} foreacha € f(C)\ H;

HYC LG, foreach u € I, then Aut Le = R and OutL¢ = ReflLe (in
particular, At L = Gand OutL = H), andforeach g €« HN f(C)., g isa
regular automorphism of Lc (that is, gag~! = a ifand only ifa — 1);

4 if X € G and X is not conjugate in G to an element of one of the groups
G, 1t € I, then X is not an involution;

5} ifall groups G, i € 1, are torsion-free (respectively, periodic and without in-
volutions and H has no involutions), then G may be chosen so that the subgroup
L is worsion-free (respectively, periodic and without involutions) too.

3. Some applications of Theorem 1.3

First of all, we would like to emphasize that Theorem 1.3 provides an opportunity to
reformulate any embedding result based on the schemes of §§34, 36 [10] (with the
only restriction that the resulting group G is not of bounded exponent, it is caused by
the additional condition RS in the definition of G (see §2) and helps to avoid examples
of groups like an infinite non-topologizable group in [8]) as a topological embedding
of a sct of discrete groups into a non-discrete Hausdoriff topological group.

The detailed discussion of some applications of Theorem A [4] (and therefore of its
generalization Theorem 1.3 of the present paper) may be foand in [4]. i this section
we geacralize some results in [4] to the class of all discrete groups.

Theorems F and G in [4] are devoted to construction of uncountable strongly
minimal topological groups. (A non-discrete Hausdorff topologinal group is called
strongly minimal if every proper subgroup of  is discrete.) Now we have

Theorem 3.1. Let{G,)uer. | 1| > 1, be an arbitrary set of nontrivial discrete groups
such that Z:p,e: |Gyl = R, for some positive integer n > 1. Then the free amalgam
Q! of the groups G, can be topologically embedded in a simple strongly minimal
topological group G = gp{Q'} such that if M is a proper subgroup of G and M is
not contained in a subgroup conjugate in G to some G, p € I, then |M < X,
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Theorem 3.2. Assume, for an infinite cardinalw, there exists a discrete Jonsson group
M (that is, M has no proper subgroups of the same cardinality) of cardinality a. Then
M can be topologically embedded in a simple Jonsson strongly minimal topalogical
group G of cardinality o,

Proof of Theorems 3.1 and 3.1. Repeat the proofs of Theorem F and Theorem G in
[4] with references to Theorens A and B in [4] formally replaced by refcrences to
Theorem 1.3 and Theorem 2.2 of this paper. a

The following result is a generalization of Theorem H [4] about the groups of outer
topological automorphisms of non-discrete groups.

Theorem 3.3. Let {G . )uecs be an arbitrary set of nontrivial discrete groups and H
an arbitrary discrete group. Then there is a non-discrete Hausdorff topological group
G such that

1) thefree amalgamofihe groups G, is topologicaily embedded in a simple normal
open subgroup L of G and G is the semidirect product of H and L;

2) the group Aut L of topological awtomorphisms of the group L is algebraically
ispmorphic 1o G (and the group Oul L of outer topological automorphisms of
L is algebraically isomorphic to H), and for each g € H \ {1}, g is a regular
automorphism of L;

3y G may be chosen 1o be metrizable.

Proof. We may assume that [/[ > 1. Theorem 2.2 applies to the free amalgam Q' of
the groups H and G,,, 1« € 1, (and an arbitrary geaerating mapping f on Q = Q'\[1})
and yields a group (& with a simple normal infinite subgroup L such that 1) the free
amalgam of the groups G, is embedded in L and G is the semidirect product of H
and L, and 2) Aut L = G and Out L = H, and g is a regular automorphim of L for
eachg e H\ {1}

Now Theorem 1.3 can be apphied to the resulting group G. It follows from the
proof of 1.cmxma 4.1 (see §4) than an open basis at the identity of G can be chosen in
such a way that it consists of neighbourhoods contained in the subgroup L. Hence L
is an open subgroup of G. It remains to nole that every inner algebraic auromorphisin

of a topological group is a homcomorphism. O

By a famous embedding theorem of Higman, Neamann and Neumann, [2], every
countable group can be embedded in a 2-generator group. But this embedding con-
struction contains many subgroups other than the embedding group and its conjugates,
and there is little information abont the automorphism group of the resulting group.
In [5] the second author proved a theorem on embeddability of every countable set of
countable groups without involutions in a simple 2-generator infinite group in which
every propar subgroup is either a cyclic group or contained in a subgroup conjugate
to one of the embedding groups, and the generalizations of this theorem to the case of
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a countable set of arbitrary countable groups were given in [9] and [7). For countable
discrete groups we obtain

Theorem 3.4. Let (G },er be acountable set of nontrivial countable discrete groups
containing either three groups or two groups of which one has order at least 3 and H
an arbitrary countable discrete groyp. Then the free amalgam Q! of the groups H and
Gy, i € 1, can be tupologically embedded in a non-discrete Hausdorff topological
group G = gp{R!} with the following properties:

1) thafree amalgam of the groups G,, is topologically embedded in a simple normal
open strongly minimal topological subgroup L of G and G is the semidirect
product of H and L;

2) the group Awt 1, of topological automorphisms of L is algebraically isomorphic
to G fand the group Out L of outer topological automorphisms of L is alge-
braically isomorphic to H), and g is a regular awtomorphism of L for each
ge H\{1};

NIFX.YeLwithX € Gu\{1}, Y ¢ G for some it < 1, then either L is
algebraically generated by the pair (X,Y) or X and Y are involutions, or X
and XY are involutions;

4) every proper subgroup of L is either a cyclic group or infinite dihedral (if one
of the groups G, p € I, or H has involutions), or contained in a subgroup
conjugate in G to some G;

3) if X € G and X is not conjugate in G (o an element of one of the groups G,,,
i € I, then X is not an involution;

6) if all groups G, p € I, are torsion-free (respectively, periodic and without
involutions and H has no involutions), then G may be chusen such that the
subgroup L is torsion-free (respectively, periodic and without involutions) tov;

Ty G may be chasen to be metrizable.

Proof We define a generating mapping £ on Q = Q! \ {1} in the following way: if
CCQsuchthat C & G, foreach p € I, C € H and C is not dihedral (i¢ follows
from the statement of the theorem that such a subset C exists), then f(C) = Q.
Then Theorem B applies 1o Q! and this mapping f and yields a group G = gp(Q*)
with a simpie normal infinite subgroup L such that 1) the free amalgam of the groups
G, € I, is embedded in L and G is the semidirect product of H and L, 2)
AutL = G and Out . = H, and for each ¢ € H \ {1}, g is a regular antomorphism
of L, and 3) G has properties 4-6 in the statement of the theorem. Assertion 3 of the
Theorem 3.4 can be proved in the same way as in Theorem 2 [9].

Now Theorem 1.3 supplies the group G with the required nou-discrete Hausdorff
topology. That the subgroup L is open can be explained in a way as in the proof of
Theorem F in [4]. O
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4, Proof of Theorem 1.3

For each positive integer d > 1, we denote by Uy a set of 7-aperiodic cyclically
reduced words (over the alphabet Q) of length ; = 24E@+Dnd 41 written in the normal
form (that is, every element X in Uy is written in the form X, ... , X,, where each
Xi, 1 <1 < t,1is a nontrivial element of Gy, p() € 1, and pu(f) ¥ p(l — 1) for
1=1,...,t — 1y with the properties that U/ = U, ', where U/, ' = {a™!, a € Uy},
and if A, B € Uy and A # B, then every common subword of A and B has length
less then I3 /3. The words in U, are called distinguished words of depth d.

Lemma 4.1. For each d > 1, there is a non-empty set Uy of distinguished words of
depth d and moreover, it can be assumed that |Ua| = |Q| if the set Q is infinite.

Proof. There exists 1 € [ such that ‘G, \ {1} < |Q2\ Gyl|. Let 2 and b be arbitrary
fixed elements of G, \ {1} and Q\ G, respectively. By Theorem 4.6, [10), there exists
a 6-aperiodic word W of length /3/2 in a 2-letter alphabet {x, y}. If c is an arbitrary
element of Q \ G, such that b # ¢ (such a ¢ always exisis, since |2| > 3), then
putting x — (ab)ac(ab)y®ac(ab)®ac, y - > ac yields a cyclically reduced word W, of
length > I; which is 7-aperiodic relative to Q. But the word W, does not contain the
suhword (ab) " (ac) !(ab)~2. Hence every common subword X of W, and W ! is
of length | X! < 20 < [;/3. Thus the assertion of the lemma is proved if the set Q2 is
finite.

If the set Q is infinite, then repeating the previous considcrations, we obiain a
7-aperiodic cyclically reduced word W, of length > I; foreach ¢ € \ (G, U {b})
and include a cyclically reduced subword V, of W, of length /; together with V! in
U,. Itis easy to see, as above, that A, B ¢ U/; and A % B implies that every common
subword X of A and B is of length [X| < 20 < I;/3. Now the assertion of the lemma
follows from the equation

\Ua| = 12\ (G U {BD] = 182 o

The following important reselt about the words in Uy, d > 1, will be proved in
§5.
Lemma 4.2, Let {Tih<i<f. {Lih<j<r be arbitrary sets of distinguished words of
depths t and s, respectively, with f < 2' andr < 2°, andAle' ...AfT;"AfH =
B\LY ...B.LY B,,, in G, where Ai| < 28L,/5, |Bj) < 2BI;/5(1 <i < fr],
l<jsr+) el —18l=1(1<i s f 1= j<r)andA;, B; # liﬂGlfT}s_']] =
T and LY} = 1., respectivelyfori € 2....., fl.j € (2,.. ,r). Thent =s,
f=rnT=LYand Aj=B;iinGforic(L,..., fhje(l,..., f+1}.

For each d = 1, we assume that I/y £ @ (it is possible by Lemma 4.1). Let

Aw = UL, Uy, and also let T be an arbitrary family of subsets of A; with the
following propesties:
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i) ifA € IT,then A = A~! and A" Uy # @ for an infinite set of positive integers
d;

iiyifA,Bell,thenANBell

Of course, such a set T1 exists, for example, TT = {A}. Foreach A € 1, we define a
family of sets ©;(A), where & > 1, in the following way.

a) If T € A N Uy for some positive integer 4 and Z is a minimal word in G (that
is, Z i3 minimal in each rank § > 1) with syls/d < |Z| < (s + Dyls/d for
somes € {0,1,...,d—1}, then we include Z~1 7= Z in ©4_;(A). it follows
from Lemma 4.2 that if Z~)T%'Z are included in 6,,(A) for some m > 1 in
the above-mentioned way, then Z~17+1Z ¢ ©,(A) whenevers £m.

b) Let ©,(A), k > |, be defined as ina)and L. = Ly...L,, where for each
il i<t Li =Z'TZ;, 181 = 1, T; is a distinguished word of some
depth d(i} such that T; € A, and | Z;| < ylqg). Now foreach k > 1, we define
sky = |{Ly, ..., L} N O(A)]. I 0 < 5(k) < 2* for cach positive integer k,
then we set L € ©;(A) for s = mingy).a(k — [logy s(k)]). where [{] denotes
the integer part of /.

It is easy to see that €, (A) D &;,(A) foreach A € IT and & > 1. Now we prove
some properties of the sets ©;(A).

Lemma43. If T € Og(A) forsome A e Nandk > 1and T # 1inG, then T

may be represented in the unique form T = C1T}' ... CuT5" Ciut1, where |&1] = 1

and T; is a distinguished word of some depth d such thetT; ¢ A, 1 <i<m, d=>k,

gc.-l <2BlafSporeachi € {1,... . m+1),m <2 andC; #£ 1inGH T, =T,
<i=m

(This form will be called canonical.)

Proof. If T € ©(A), then by the definition of the set ©;(A), we have that T =
Li...L,. where foreachi € {1,...,1}, Li = Z7'T"Z,, 5] = 1, T; is a distin-
guished word of some depth d(i) > k, T; € A and |Z;| < plog). Let T7', ..., T}
() <... <imand |g;| =1foreachi € {1,...,m))are all distinguwished words of
the maximal depth d occurring in the expression of 7. We may assume that 7" =£ 1
in G and the value of 4 is minimal for all such expressions of 7. It follows from the
definition of the set ©;(A) that m < 29 and d > k.

By the definition of the set € (A), the total length of all L;, where i € {1, ..., )\
{i1, ... .im} does not exceed

@@= 124 "'V +2p)y 1 < vig.
So T can be represented as a product Ci 7" ... CaT; " Cet1, where
|Cs) < 3yply < 2814/5
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foreach s € {1,...,m + 1}. After corresponding reductions we may assume that
C# 1inGifT) ' =T, ", 2<s<m. 0

The uniqueness of such a presentation follows froin Lemma 4.2.
Lemma 4.4, For each A € TI, [Yiz; ©:(4) = {1}

Proof Letk = 2 and T be an arbitrary distinguished word of depth 4 = & such that
T € A. (The existence of such a word 7' follows from tha definition of IT.) Then
TT™' =1¢ O;_j(A)and (i, Or(4) 2{1}.

Let € be an arbitrary nontrivial element of ®;(A) and C 1Tf L CuTi® Cusl the
canonical form of C. If 4 is tha depth of tha distinguished words T, ... , Ty, then
it follows from the definition of the sets ®;(A) and Lemma 4.3 that C ¢ 6, (A) for
each & > d. Thus (5o 8 (A) = {1} as required. ]
Lemma 4.5, ©,,1(4)8" (4) & On(A) foreach Ac Mandm > 1.

T

Proof. Tt follows from the definition of the set ©,..1(A) that ©,+1(4) = €} (A).
Lei g and b be arbitrary elements of ®p1(A), $1(k), 52(k) and 5(k) the numbers s (k)
from tha definition of tha set @p, ;1 (A) for some presentations of the elements a, b and
the corresponding presentation of ab, respectively. Then by the definition of @, 1{A),
we have that s1(k) — 52(k) =0fork € {1,... ,m} and 0 < 5y (k), 52(k) < 2¥ ™ for
eachk > m -+ 1. Hence

s(k) = 51 (k) + s2(k) < 21

foreachk > m+1and s(k) = Ofor k € {1,....m}. Then it follows from the
definition of ©p (A) that ab € ©,(A) as required. ]

Lemmad4.6. If X ¢ Bp(A) \ Om41(A) for some A € Nand m = 1, and the

distinguished words Ti, . .. , Ty in the canonical form C\ T;* ... CyT;* Cy41 of X are
of depth d, then X0 4.1(A) € Oy (A) \ Oni1(A).

Proof. Let Y be an arbitrary element of ©4.( (A), 51(k), 52(k} and 5(k) the numbers
s(k) for the canonical forms of ¥, X and the corresponding presentation of XY,
respectivaly (see the definition of the sets ©4,1(A) and 6,(A)). Then it follows
from the definition of tha set ©4,1(A) that sy (k) = 0 foreach k € {1,...,d} and
0 < 51(k) < 2*¢ in the case k > d + 1, and by Lemma 4.3, the statement of the
lemmna and the definition of the set ©,(A), we have that 52() = 0for 1 <1 < m
orl >d+1,and 0 < 52(f) < 2/-"* foreach! € {m, ... ,d}. Thus s(k) = s2(6)
fork € {1,...,d} and s(k) = 51(k) whenever k > d + 1. Hence it follows from the
stateraent of the lermma and the definition of the sets ©,,(A) and ©4,((A) that
m = min (k — [logy s2(k)]) < d + 1 = min(k — [log, 51 (k)]),
s2(k) >0 7.(%)

hence XY € @y(A). Now by Lemma 4.2 and the choice of the integer d, we have
that XY ¢ ©,,+1(A), which completes the proof of the lemma. O
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Lemma4.7. Foreach A € I1, m > 1 and X ¢ G, there exists a positive integer g
such that X0, (A)X C Oy(A).

Proof. Let g be an arbitrary positive integer such that ¢ > m 4 2 and | X[ < yi; /g,
and let b be an arbitrary element of 8,(A). Then it follows from the definition of
the set ©,(A) thath — L;...L, with L; = Z;' T Z; foreach i, 1 < i <1, where
|8:] = 1. T; is a distinguished word of some depth d(i} > ¢ such that T; € A,

0 <{Z;| < (@d() — g + Dylaw/dG), @

and'[L). ..., L} N &4 (A) = 5(k), where s(k) =0 foreachk < gand 0 < s{k) <
254+l in the case k > q.
Now we consider the element X ~'56X = (X 'L1X)...(X'L:X). By (4),

1Z;X] < (dG) — g + Dylan/d @)

foreachi € {1,... ,r},since Ip/p < I, /r whenever p < r. Then by the definition of
the sets @y (A), k > 1,ifL; € ©;(A)forsomek > 1, theneither X1 L; X € €;_)(A)
or X~1L; X € ©y(A). Henceif 51 (k) = (XL X, ..., X~ L, X}N€;(A)| foreach
k=1, then s)(k) =0foreachk <g—1,m(g -1) <s(g)and

0 < si(k) < s(k) + s(k + 1) < 2574+° 3 2F-a+2 o pk—g-3

for each & > ¢. Thus it follows from the definition of the set ©,_2(A) that X 15X €
6,_2(A) C O (A) as required. O

Lemma 4.8, For each A, B € I and arbitrary positive integers m and g, O (A) N
-84(B) 2 8r(AN B), where k = max(m, g).

Proof. The assertion of the lemina follows immediately fromn the definition of the sets
€,(C), where s > | and C € I1. O

The last lemma of this section will also be proved in §5.

Lemma 4.9. If T is a period of some rank or a simple word in G (that is, a simple
word in each rank i > 1), then there exists a positive imteger k such that T? ¢ ©¢(A)
JoreachAelland p > 1.

‘We turn now to the proof of Thenrem 1.3.

Proof. Let I be an arbitrary set from the beginning of this section. It follows from
Lemmas 4.4—4.8 that G admits a unique non-discrete Hausdorff topology such that
a family ® = [€;(A), A € I1,& > 2} is an open basis at 1 (see, for example,
Theorem 4.5 {1]). )

Let X be an arbitrary element of G, A € [T and £ > 2. ‘Then by the definition
of the set B;(A), there exists a distingvished word T of some depth 4 > k such
that T € ©¢(A) and |X| < yly/d. Hence X~ 'TX € ©;(A), and it follows from
Lemma 4.3 that tha set ®y (A) is of cardinality ||. Therefore, every neighbourhood
of G is of cardinality |G|.
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Let X e G\ Ox(A) forsome A e [Tand k > 2. If X ¢ ©; (A), then it follows
from Lemma 4.5 that X©, (A) N 6;(A) — @, otherwize X € O, 1(A) \ ©;(A) and
by Lemma 4.6, there is a positive integer 4 such that X©4, 1 (A) N O (A) = . Hence
the set ©;(A) is closed and a group G is O~dimensional.

Let X be an arbitrary clement of G, for some y € I. If X € ©,(A) for some
A e Mand &k > 2, then we arrive at a contradiction to Lemma 4.3 and Lemma 4.2,
since |X| = 1. Thus G is a discrete subgroup of G. Moreover, every inner algebraic
automorphism of G is a homeomorphism, then if M is conjugate to a subgroup of G,
for some pu € 7, then M is discrete,

Let M = gp{A} be a cyclic subgroup of G not conjugate to a subgroup of G, for
some u € [, Then by Theorem 34.7 [i0], A is conjugate in G 10 a power of a period
T of some rank or to a power of a simple word T in G. It follows from Lemma 4.9
that gp{T}, and therefore also M, is a discrete subgroup of G. Since every cyclic
subgroup of G is discrete, it is obvious that cvery finite extension of a cyclic subgroup
is discrete as well.

Let 8 be an arbitrary cardinal number such that 8 < |G|. If 8 is finite, then, of
course, every subgroup of G of cardinality < # is discrete, and in order to obtain the
group G to be metrizable, it is sufficient to take a family © = {®;(A2), k > 2} as an
open basis at 1.

Hence we may consider the case when 8 is infinite, and therefore, the set 2 is
infinite wo. Then by Lemina 4.1, we may assume thai (Ui — &| = &) for each
d>1

A set IT is defined in the following way:

N={A:ACA,A— AL |AI\ A < 8).

Now foreach A € I1andd > 1, webevethat ANUy; # A, since otherwise A1\A D Uy
and |A)\Al= |G| > B.LetA, Be M. Then ANB C Aj and

IMANANB) = |AI\A[+]AI\ Bl = 4.

Thus the set I satisfies both conditions from the beginming of this section, and G
admits a non-discrete Hausdorff topology such that a family {€,(A), A € [T,k > 2}
is an open basis at 1. .

Let M be an arbitrary subgroup of G of cardinality ¥y < 8, K = ©(A1} N M.
If K = {1}, then M N ®;3(A ()} = {1} and M is discrete. Otherwise let § be the set
of all distinguished words occurring in the expressions of the canonical forms of ai
nontrivial elements of X. Then it follows from Lemma 4.3 that | S| < max(Rp, K),
hence |S] < A. Now A1 \ (SUS™1) ¢ IT and by Lemma 4.3, and Lemma 4.2,
M N &3(A1 \ (SUS™")) = {1]. Hence M is a discrete subgroup of G, which
completes the proof of the theorem. O
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S. Proofs of Lemma 4.2 and Lemma 4.9

Before embarking on the proofs, we need some auxiliary results. All definitions and
notation which are nol introducex in this paper may be found in [10].

By a diagram of rank i, where { > 2, we mean a diagram over the presentation
(3). Reiators of the first type correspond, in the diagrams under consideration, to cells
of the first type whose contour is taken as one long cyclic section. But if a cell IT
corresponds to a word of the form (2), then it is called a cell of the second type. Those
sections of IT with labels A= are called long sections while the others (with labels
Tf]) are called short sections of the contour.

By an H-diagram we understand a circular B-diagram A whose contour has the
form pysi ... pxsepi11q, where s, ... s, are called long sections of the first kind,
Dl, ... P+ Short sections, and g a long section of the second kind. All sections are
assumed reduced and, for some positive integer j, the following conditions hold.

H1. Al long sections of the first kind and short sections are geodesic.

H2. Foreachi € {1,...,k}, |s;,] = 0 or the label of s; is a 7-aperiodic reduced
word.

H3. k >3 and[sg], ..., s} > j/10.
H4, gyl +...+ a1l < Blk4 1)j.

HS5. If p is a section of a cel], then there are contiguity submaps of p to at most 10
distinet sections of 8A (by meaning the standard partition of the contour).

H6. The contiguity degree of any contiguity submap of a long section of the first
kind to ¢ is less than 9/10.

H7. The long section g of the second kind is either smooth or geodesic.

A contiguity submap I of zero rank of f to 5 in any diagram A, where ¢ and 5 are
sections of cells or of 3 A, is called maximal if A has no distinct contignity submaps
of ¢ to 5 of zero rank containing I

Lemma 5.1. In any H-diagram A, there is @ maximal contiguity submap I of zero
rank of s; to sj, where | <i < f < k.

Proof. We define tha distinguished contiguity submaps in an H-diagram A in the
same way as for C-maps (see §23 [10]). The §2-edges of the contigeity arcs of s; w0
sj, where 1 < i, j < k, for the distinguished submaps are called oufer edges while all
the other edges are called inmer. The weight of the edges belonging to the contours
of the cells is left uncbanged. Morcover, we define the weight of an edge ¢ of a long
section s of the first kind in A by

-1/3
v(e) = |s| 7.
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The weights of other edges are set equal to zero. The weights of paths, cells and
submaps are defined as in §21 [10].

1)} Let T be a conliguity submap of a cell 7 to a long section s of the first kind. If
(x, T, 5) = ¢, then by the proof of Theorem 22.2 [10], there are a long section
p of a cell iy and a contiguity submap I'y of p to 5 such that 7(I") = 0 and
(p,Ti.5) = &. We arrive at a contradiction to H2 and the choice of defining
relators in . Thes (x, T, 5} < &.

2) Let T be a contiguity submap of a long section s of the first kind to #, where ¢
is a section of a cell or of the contour of A. Then it follows from the definition
of contiguity submaps and item 1) that I" is a O-contiguity submap and aT" =
L1y, where /), I are subpaths of 5 and 7, respectively. If r(I"y > 0, then by
Corollary 22.1 [10}, I has a D-cell = and disjoint contiguity submaps I';, T'; of
x toly, 1> such that (=, Ty, &) + (&, I'2, 2) > y'. Xt follows from Lemma 21.7
[10] that (=, I, ) > y’ —a’ > &, which contradicts item 1). Thus (") =0.

3) LetT', 'y be contiguity submaps of a long section s of the first kind to ¢, where
t is a section of a cell or of the contour of A, By item 2), #(I"1), r(I'z) = 0.
Assume first that these submaps arc not disjoint. Then if is obvious that there
exists a contiguity submap of zero rank of s to ¢ containing "y and Tz, 1 "y
and I'; are disjoint contiguity submaps of s to ¢, then they are the bonds of a
O-contiguity submap I'; of 5 to ¢. 1t follows from item 2) that r(I'3} = 0, and
T}, "z are submaps of I'3, Therefore, a maximal contiguity submap of s to 7 is
unique.

4) Let T be a distinguished contiguity submap of a long section pofacelltoa
long section s of the first kind. Then by item 2}, »(I"} = 0 and it follows from
H2 and the choice of defining relators in G that (p, I, 5) < &.

5) If I' is a contiguity submap of a long section s of the first kind to ¢, where 7 is
a section of a cell or of the contour of A, then by item 2), r(I') =0, and so T
has no special cells. Then repeating the proof of Lemma 21.9 [10], we obtain
that the sum /4 of the weights of all the special cells of an H-diagram A is at
most a"sv(A).

6) Let [ be a distinguished contiguity submap of a long section ¢! of a cell TT
t0 a section g; of 8A with (1. T, ¢5) < &, Kr the sum of the weights of the
edges in gy and g2, where p1g1 p2q2 = 3(q], T, g3)- Then v(g1) < sv(g]). In
order to evalusie v(gz)}, we may assume that g is a long section of the first kind
Eg:bemise v(q2) = 0). Hence by item 2), lg2| = |g1] < ¢lg]|, and we have

L

v(g2) = lga2llgs ™ < 192> < (elg| Y = £*Pug))-
Thus Kr = vig1) + vig2) < 2e¥>vig)).
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Let Ko be the sum of the nombers K- as I" runs through all such submaps I'
in A. By definition, all Q-edges of cells are inner, and it follows from H5 that
Ko < 20e%/3M where M is the sum of the weights of all the inner edges in A.

7) Let Co and Gy be defined for an H-diagram in the same way as in Lemmas 23.9
and 23.11 [10] for a C-map, respectively. Then, as in l.emmas 23.9 and 23.11
[10], we obtain that Cy < 3 1862v(A) and Go < o’ M.

£) Let I'" be a distinguished contiguity submap of a short section p of a cell IT of
rank & to a long section s of the first kind of 8A. Set 3(p. T, 5) = p1g1 P2q2.
and let L be the sum of the vig2) = v(g} ) over all such submaps I'. By item 2)
and the choice of defining relators in G, |g2| = |q1| < dk, Hence

v(g2) < |921¥? < (@3 = (dy? P mk)?? < (@Y Pv).

Taking into account HS and the fact that the number of short sections of IT is
not greater then %, we obtain L < 20h(d1)?*M < aM.

9) Let I'" be a distinguished contiguity submap of a short section p of a contour to
a long section s of the first kind with 8(p, 1", 5) = p1g; p292. F the sum of the
weights of all such submaps . By item 2), |g1) = igz)and F = 3 _v(gq2). It
follows from H3, H4 and the definition of the weight function that

F <208k + D)3 + Bk + DHG10™'P
and

Fiv(A) < Bk + 1) + 10138k + 1)) ((k —2)1072/3) !
=2k + NPk —2) "10%3827 | 10k + 1)k —2)7' 8 < 30825,

10) Lel I' be a contiguity submap of a long section s of the first kind to 5. Then by
item 2), r(I"} = 0, and we arrive at a contradiction to H1.

11) Repeating the proof of Lemma 23,14 [10} (and using H6 and the estimates from
items 5)~9)), we obtain that die sum of the weights of all inner edges in an
H diagram A is less than (8'/2 + 30823 +9/10)v(A). Hence the sum of the
weights of all outer edges in A is greater than

(1 — 872 - 30823 — 9/10)v(A) > 0,
and the assertion of the lemina follows immediately from items 3) and 10). D

Lemma 5.2. Any H-diagram A contains a contiguity submap " of zero rank of 5; 10
siy1forsomei € {1, ... k—1}.

Proof. We proceed by induction on k. For & = 3, it follows from Lemma 5.1 that

there is a maximal contiguity submap I'" of zerorank of 5; to s;, where 1 < i < j < 3.
If i or j is eqnal to 2, then the assertion of the lemma is proved in this case, otherwise
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we have that i = | and j = 3. Hence A contains a subdiagram Ay with contour
5| P252p353, where 5| and s} are subpaths of 51 and s3, respectively. Of course, A
is an H-diagram and by the maximality of I', there is no contiguity submaps of s to
3. Now we derive the assertion of the lemma for A;, and therefore also for A, from
Lemma 5.1.

Now let k > 3. By Lemma 5.1, there is a maximal contiguity submap I' of zero
rank of s; to s;, where 1 <{ < j < k. If f = i + 1, then the assertion is proved,
otherwise A consists of two subdiagrams A and A wirich are jointin A by subpaths
of 5; and s;. 1t is easy to see that at laast one of the subdiagrams A and A3, say A,
is an H-diagram with the standard partition of the contour p{s| ... p;s{p}, ¢, where
P11 = |p;y] = l¢'l = O, and either 1 < kori = 1 and j = k. In the second
case, it follows from the maximality of I" and Lemma 5.1 for A; that the assertion of
Lemma 5.2 is true for A; or Ay contains an H-subdiagram Aax in which the pomber
of long sections of the first kind is less than k. By the induction hypathesis we may
assume that the lemma is true for A (or A3)and therefore also for A.

By an L-diagram we mean a circular B-diagram A with contour p;sy ... pisi
Pr+1q, where 51, ... , 5 and g are celled long sections of the first and second kind,
respectivaly, P1, ... , piry are called short sections, all sections are reduced, A sat-
isfies H1, H2, H6 and H7, and, for some positive integer j, the following conditions
hold:

Ll. k< j;
L2. |5;| < jforeachi € {1,... ,k);
L3 k>=3and |83],..., |sk-1] > f/%:

L4, jp;) < Bjforeachie{1,... . k4 1}. D

Lemma 5.3. In any l.-diagram A, there exists a contiguity submap I" of zero rank of
5;fo 8541 forsomei € {1,... , k—1],

Proof. To obtain the assertion of the lemma we need induction on k.

1) If A satisfies 115 (in particular, if ¥ = 3, 4), then A is an H-diagram, and the
assertion of the lemma follows from Lemma 5.2.

2) Let T be a contiguity submap of a long section p of a cell IT of rank i to
a long section s of the first kind, + = p,s; ... prSePi+1. Repeating the proof of
Lemma 23.16 [10], we can define a contiguity submap I'; of 11 to 8A = g such
that ([T, "1, tg)} > 1 — 38. By Lemma 21.7 [10] and H7, the contiguity degree of
I1 to q is lass then o, hence there exists a contiguity submap [; of IT to ¢ with
(1,72, > 1 — &' - 38, and it follows from Lemma 21.3 [10] that

[t,> (1 —a' =583 > (311]/3. é)
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On the other hand, it follows from the choice of defining relations (1) and (2) of G
that [T1| > hni?, and by L1, L2 and LA,

Itl < 4 Btk +1))j < (1 +28)2. (6)

Hence
i < (3(1 +28)0)%j < j/1000,

By item 2} from the proof of {.emma 5.1, r(I") = 0 and it follows from H2 that
the length of I A p is less then 10i < j/100.

3)Let I" be a contiguity submap of a short section p of a cell I1 of rank i toa long
section s of the first kind of 8A. Then it follows from the chuice of defining relators
in G that |p| < 84t ~1{aT1{, and by (5) and (6),

Il < 3(1 +28)8dii ' j2. (M

First we consider the case j > 100di. Then it follows from the choice of defining
rclators in G that

Ipl < di < jI100.
We now assume that j < 100di. Then by (7),
'pl < 300(1 + 28)8d%:7 < j/100,

Hence, in either case, |p| < f/100.

By item 2) from tha proof of L.emma 5.1, r(I"} = 0, and moreover, we have that
the length of T" A p is not greater tham | p| < j/100.

4)Let k > 5 and A does not satisfy HS, that is, there exists a cell IT of rank ; with
a section p such that there are contiguity submaps of p to at least 11 distinct sections
of @A, Then it follows from items 2} and 3) that at least one of the following cases is
possibla.

a} There exists a subdiagram A, of A with contour /y¢;i>p;, where [}, L are
subpaths of long neighbouring sections of the first kind (it is possihle that |/;] = 0 for
some i € {1, 2}), /1 and / are not simultaneously subpaths of 51 and si (or s, and s1),
respectively, py and 7) are subpaihs of p and a short section of A, respectively, there
is no contiguity submmaps of /1, / 10 p1 and

max(|l1], [21) > (1/4 — 1/100)j/2 = 3/25.

Hence Aj is an H diagram, and by Lemma 5.2, |/,]. {/2] > 0 and there is a contiguity
submap of zero rank of I; to f;, which completes the proof of the lemma in this case.

b) There exists a subdiagram A of A with contour 11!y ...#85lrir 411, Where 3 <
f <k, sections 11, ... #r41 and p; are subpaths of short sections and p, respectively,
I1, Iy are subpaths of long sections of the first kind, /3, ...Ir_; arc long sections of
the first kind of lengths greater than j/4, such that there i8 no contiguity submaps of
sections Iy, ..., Ir to p,. Then A, is a L-diagram with f < &, and we can assume
that the lerma is true for A; and therefore also for A. il
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By a K-diagram we understand a circular B-diagram A whose contour has the form
PIS1 - -- PRSePet+1q. Where ), .., ,Sg and py, ..., pp+ are called long sections of
the first kind and short sections, respectively, g is called a long section of the second
kind. All sections are assumed reduced, A satisfies HI, 117 and, for some positive
integer j, the following conditions hold:

K1. the label of each long section of the first kind is a 7-aperiodic reduced word;
K2. |s;| = jforeachi ¢ {1,... ,k};

K3. the contiguity degree of any contiguity submap of a long section of the first kind
to g is less than 1/5;

K4. k < j;
K35. the length of each short section is less then 85.
The main auxiliary lemma is

Lemma 54, Inany K-diagram A, k > 1 ond forsome i ¢ {1,... .k — 1}, thereis
a contiguity submap I" of zero rank of s; t0 5i41 such that (s; T, si+1) > 1/3 ond the
lengths of the :'m'tial.s‘egmenrsofpathssi" and s; .| 0 the mitial paint of T A 5;41 are
less than Bj.

Proof 1)LetT be a contignity submap of a cell & to a long section s of the first kind.
Then, as in item 1) from the proof of Lemma 5.1, we have that (x, T, 5} < &,

2)If k = 1, then 3A — pis|pisip2sy g with |py| = Is]| = I55| = |p5| =0,
and A is an H-diagram  We arrive at a contradiction to Lemma 5.1,

3} Let T be a contiguity submap of a Jong section s of the first kind to ¢, where ¢
is a section of a cell or of the contour of A . Then repeating the proofs of items 2} and
3) from the proof of Lemma 5.1, we obtain that I" is a submap of the unique maximal
contiguity submap (of zero rank) of 5 to £,

4) Let I" be a maximal contiguity submap of zero rank of s; to s;4| for some
i € {1....,k—1}. Hence thereis a subdiagram A of A with contourr, p;+#;, where
f I and 1, are the initial segments of paths s, - and §;.;, respectively, to the initial
point of T" A 5341 If r (A1) > 0, then by Corollary 22.1 [10], Aj has a D-cell x and
disjoint contiguity submaps I, 'z, T'3 of x w01, 1 and p; ; 1, respectively, such that
(, T, 1) + (o, T3, 2) + (7, T3, pi41) > ¥ It follows from Lemma 21.7 [10] that
(%, T3, pi+1) < o, then there is s € {1, 2} such that (x, I's, &) > (¥ —a'}/2 > &,
which contradicts item 1). lience r(A,) = 0 and it follows from the maximality of T’
that || < |pi+i1| < Bj foreachs € {1, 2}.

5) By items 2)—4), it remains to prove that for some i ¢ {l,...,k — 1}, there
exists a contiguity submap I' of s; to s;41, such that (s;, 1°, 541} > 1/3.

Assuming the contrary, we have that there is no i ¢ {I,...,k — 1} such that
there exists a contiguity submap I" of 5; to 5;41 with (5;. T, 5;41) > 1/3. If there is
a contiguity submap I" of s to sz, then by item 3), there exist a maximal contiguity
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submap I"| (of zero rank) of ) 10 5> and a subdiagram A! of A with contour 7, pata,
where ¢, | and #; are the initial segments of paths s,‘l and s3, respectively, to the
initial point of I'} A s2. Excising I'y and A! from A, we obtain a diagram A ;. Then
by repeating the same trick for each i € (2,...,&k — 1},we obtain a B-diagram
Ag_) — A’ with contour pis] ... pi5, Pr+19, where p! and s; are subpaths of p; and
§;, Tespectively, | < i < k (and it is possible thet [p]| = 0 forsome i < {I,... .k},
suchthalthereisnooonﬁguitysubmapsofs;tos,.’H,l <i<k-—1, and it follows
from our assumption and item 4) that

sl > (1—2(1/3+ B))j > j/4 8

foreachi € {1, ... , k).

It is obvious thet A’ satisfies H1, H2, H7 and L1-L4. Moreover, if I" is a contiguity
submap of 5; to g forsome i € {1,... ,k}, thenby K3, [T" As]| < |I" Asi| < j/5,
and it follows from (8) that

(s. T, ) = T Ag/Is{| < (j/5)/G/4) = 4/5.

Hence A’ is a L-diagram, and we arrive at a contradiction to Lemma 5.3.
The proof of Lemma 5.4 is complete. a

Now all necessary machinery has been developed, and we pass to the proof of
Lemma 4.2.

Proof. Assume first that ¢+ # s and consider, for example, the case 1 < 5. Then it
follows from the statement of the [emma and the definition of distinguished words
thet

AT .. .AIT;’A_,:+|| < 2/ (1+2B8/5) < BL/5 . &)
Let A be a reduced circular diagram for an equation
- DLYBLE.. B, LY =1,

where DD — B, (4, Tf‘ ...AII?’A;H)_'Bl, with contour pys, ... prs,, where

¢(s;) = L¥, ¢(p1) = D and ¢(p;) = Bj foreachi € {1,...,r}, j € {2,... .7}
We may assume that D, B, ... , B, are minimal words im G, hence A is a X -diagram
with long sections s; of the firstkind (1 </ < r) and | pr41| = Ig| = O, since by the
statemeni of the [emma and (9), r < 2° < I, and

D] < (4/5+ 1/5)8I; = BI;.

ByLemma54,r > 1andforsomei € {1,...,r — 1}, there is a contiguity submap
I" of zero rank of s; to 5,4 such that (s;, T, 5;.1) > 1/3 and the lengths of the initial
segments of paths s ! and 5741 to the initial point of ' A 5,..; are less than g8l,.

Then there are decompositions of the words L™ and L such that L, * — XYZ,
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L+ — X\YZ, inrank 1, where [X|, |X\| < Bl; and |¥}| > I;/3. By the definition
of a set U, we have that Ll.'a' = Lf{:l' in rank 1.

Let X # X, and suppose, for example, that |[X| < |X|. Then X, = X X, where
1 <|X3] < Bl;, and YZ = XY Z;. 1t follows from |X2| < |¥| thatY — X,¥, and
Y|Z — X,Y,Z), and so on. As a result, we obtain that ¥ contains a subword X7,
since

TNX2l < 7Bl < 1573 < |YI.

We arrive at a contradiction to the definition of a set I7;. Thus X = X in rank | and
the paths 5; ' and 5;4) are compatible in A. Then L} = L, %" and B;, = 1 in G,
which contradicts the statement of the lemma. Hence f = s.

Now let A be a reduced circular diagram for an equation

DL7% .. B'LUU DT L AFTY =1,

where D) — B,‘1A1 and D; = Ay B:_:,, with contour pys; ... pry s, 5+ where

d(s) — Lr 5:'__:;-]9 ¢(3r+j) = Tsj! o(p1) = Dy, ¢(Pr+l) =D, ¢(pk) = Br_+lz_.§
and ¢(p,+y) = Agfori e {l,....r}, je{l,....fhke{2,...,rl,qg €
{2,... . f}. Wecanassumethat Dy, Dy, By, ... , By, Az, ... , Ay are minimal words
in G, hence A is a K -diagram with long sections s; of the firstkind (1 <i < r + f)
and |p.. ¢l = g| =0,since .Dy , ;D3| < 4L /5andr + f <277 < |,
Repeating the previous considerations and using Lemma 5.4 and the staiement of
Lemma 4.2, we have that L;> = T?', Dy = B7'A| = 1 and AT§ T Ay

= B,L?...L¥ B, in G. Assuming thet f < r and using induction on f, we
obtain the assertion of the lemma or (in the case f < r) an equation A; ;| =
BfHLf..’_'_*,' ...Lf’B,+1, and, as in the consideration of the caze r < s, we armmive
at a contradiction to the statement of the lemma.

The proof of Lemma 4.2 is complete. O

It remains to prove Lemma 4.9.

Proof. Let k be an arbitrary positive integer such that |T'| < Iz /50, and suppose thet
T? € Or(A)forsome A € Mand p > 1.LetCy T} ... Cy T Cin1 be the canonical
formof T, where T},... , T)y € A. ByLemma 4.3, |[Ty| = ... = |T;,| = I, where
d>k

Let A be areduced circular diagram for an equation C1 T} ... Tn"Ca 1T 7 =1
with contour py$y ... PmSmPm41q, Where ¢(s;) = I, p(p)) = Cju 1 <i < m,
I<j<m+1,andp(g) =T 7, Wemayassume that C), ... , Cpy are minimal
words in G. If T is a period of some rank, then by Lemma 26.5 {10}, the section g can
be assumed smooth in A if we modify its Jabel in accordance with Lemma 13.3 [10].
Now it is obvious that A satisfies H1, H7 and K1, K2, K4, K5 (since by 1.emma 4.3,
we have that m < 2¢ < Iy).
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Suppose that I" is a contiguity submap of s; to g for some i € {1,...,m}. Then
by item 2) from the proof of Lemma 5.1, r(I") = 0, and it follows from 7-aperiodicity
of the word T; that [ As;| < 10]T| < |s:|/5. Hence A is a K -diagram, and repeating
the proof of Lemma 4.2, we obtain that there is{ € [2,... ,m} suchthatC; = 1in G
and T;'7' = T, wléch contradicts the definition of the canonical form.

The proof of Lemma 4.9 is complete. a
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