
ELSWlER 

TOPOLOGY 
AND ITS 

Topology and its Applications 86 (1998) 25-46 

APPLICATIONS 

Suitable sets for topological groups 

W.W. Comfort al*, Sidney A. Morris bll, D. RobbieCj2, S. Svetlichnyd$3, 
M. TkaEenko e,4 

a Department of Mathematics, Wesleyan Universih: Middletown, CT 06459, USA 
b Deputy Vice-Chancellor University of South Australia, North Terrace, SA SOOO, Australia 

’ Department of Mathematics, lJniversi@ of Melbourne, Parkville, Victoria 3052, Australia 
d School of Computing and Mathematics, De&n University, Clayton, Victoria 3168, Australia 

’ Department of Mathematics, Autonomous Independent University of Mexico City, 
Av. Michoacan y la Purisima S/N Iztapalapa, D.E. C.P 09340, Mexico 

Received 27 December 1995; revised 21 December 1996 

Abstract 

A subset S of a topological group G is said to be a suitable set if (a) it has the discrete 
topology, (b) it is a closed subset of G \ {l}, and (c) the subgroup generated by S is dense in 
G. K.H. Hoffmann and S.A. Morris proved that every locally compact group has a suitable set. 
In this paper it is proved that every metrizable topological group and every countable Hausdorff 
topological group has a suitable set. Examples of Hausdorff topological groups without suitable 

sets are produced. The free abelian topological group on the Stone--(?ech compactification of 
any uncountable discrete space is one such example. Under the assumption of the Continuum 
Hypothesis or Martin’s Axiom it is shown that examples exist of separable Hausdorff topological 
groups with no suitable set. It is not known if such examples exist in ZFC alone. An example is 
produced here of a compact connected abelian group with a one-element suitable set which has a 
dense c-compact connected subgroup with no suitable set. 0 1998 Elsevier Science B.V. 

Keywords: Free abelian topological group; Free topological group; F-space; k,-space; Suitable 

set; Topological group 

AMS classification: 54Hll; 54A25 

* Corresponding author. E-mail: wcomfort@wesleyan.edu. 
’ E-mail: sid.morris@unisa.edu.au. 
2 E-mail: robbie@mundoe.maths.mu.oz.au. 
3 E-mail: svet@deakin.edu.au. 
4 E-mail: mich@xanum.uam.mx. 

0166-8641/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 
PI1 SO166-8641(97)00129-6 



26 WW Comfort et al. / Topology and its Applications 86 (1998) 25-46 

0. Introduction 

It is well known (see, for example, Hewitt and Ross [ 11, 25.141) that a compact 
connected Hausdorff abelian group G has weight ‘W(G) less than or equal to c if and 
only if it is monothetic; that is, if and only if it can be topologically generated by one 
element. (We say that a subset S of a topological group G topologically generates G if G 
is the smallest closed subgroup containing S.) Hoffmann and Morris [12] extended this 
by showing that a compact connected Hausdorff group can be topologically generated 
by two elements if and only if w(G) < c. It is clear that certain topological groups, 
for example, nonseparable groups, cannot be topologically generated by a finite set. So 
Hoffmann and Morris [12] introduced the concept of topological generating sets which 
are in some sense “thin”. A subset S of a topological group G is said to be a suitable 
set if it topologically generates G, is discrete and S U { 1) is closed in G. A significant 
result of [12] was that every locally compact Hausdorff group has a suitable set. (For 
early overtures in the direction of what are now called suitable sets, see Iwasawa [17] 
and Koch [18, Section 41. That every compact totally disconnected group has a suitable 
set was apparently first known by Tate and reported by Douady [6]. For a different and 
more detailed proof of this result based in part on a structure theorem of Varopoulos 
[23], see Hoffmann and Morris [16, Chapter 121.) 

If G is a topological group with a suitable set, then Hoffmann and Morris defined the 
function s on G by s(G) = min{ IS]: S is a suitable set for G}. They showed that if G is 
a connected locally compact Hausdorff group with w(G) > c, then (s(G))” = (w(G))“. 
Further results on suitable sets of locally compact groups were obtained in [2,13-Z]. 

In this paper we examine suitable sets in nonlocally compact groups. 

1. Preliminaries 

We begin with some notation and terminology. If Y is a subset of a topological space 

X, then we denote the closure of Y in X by TX, or L if confusion is impossible. If X 
is a topological group, then the subgroup generated algebraically by the set Y is denoted 

by (Y). 

Definition 1.1. Let G be a topological group and S a subset of G. Then S is said to be 
a suitable set for G if (s) = G, S has the discrete topology and S U { 1) is closed in G, 
where 1 denotes the identity element of the group. 

For locally compact groups we have the following significant theorem: 

Theorem 1.2 [ 12, Theorem 1.121. Every locally compact Hausdorfgroup has a suitable 

subset. 

Recall that the weight of a topological space X is denoted by w(X) and is defined by 
w(X) = min{jZ3]: B is a basis for the topology of X}. 
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Somewhat surprising is the next result which says that many compact groups have 

finite suitable sets, indeed 2-element suitable sets. 

Theorem 1.3 [ 12, Theorem 4.131. Every infinite compact connected Hausdorfsgroup of 

weight < c has a 2-element suitable set. 

The next result shows that we can and should restrict our attention to Hausdorff 

topological groups. 

Proposition 1.4. Let G be any non-Hausdorfftopological group with at least three ele- 

ments. Then G does not have a suitable set. 

Proof. As G is not Hausdorff, for each point g E G the set (9) contains a point h # g. 

Suppose that S is a suitable set for G and let s be any point in 5’. As S is discrete, 

s f-l(s) = {s}. S’ mce S u {I} is closed in G, (s) = {s, l}, where s # 1 as G is not 

Hausdorff. Thus (1) = {s, 1). This implies that S has at most two points, s and 1. 

Further, as {l} is a group, we have that .s2 = 1. Finally, noting that (S) = G, we see that 

G has at most two elements, which is a contradiction. Hence G has no suitable set. 0 

2. Countable topological groups 

Recall that a topological space is said to be O-dimensional if it has a basis of clopen 

subsets. 

Lemma 2.1. Let G be a nondiscrete Hausdofl topological group and U a nonempty 

open subset which generates G. Then every point x E U has an open neighborhood 

V, C U such that (U \ E) = G. Further if G is O-dimensional, then V, can be chosen 

to be clopen in G. 

Proof. Let x be any point in U, where (U) = G. Since G is not discrete, U \ {x} is 

dense in U, and hence (U \ {x}) is dense in (U) = G. But U \ {x} is open in G, so 

(U \ {x}) is open and closed in G. So (U \ {x}) = G. 

As z E (U \ {x}), there exist 91, ~2, . . . , yn E U \ {x} and ~1, ~2, . . . , Ed = 51, such 

that 5 = yf’@ I . YE=. Let 0 be an open neighborhood of x such that yi $ D 5 U, 

for i = l,... ,n. Then for each i E {l,... , n} there exists an open neighborhood Oi 

of yi such that Oi C U, 0 n Oi = 8, and 0:’ OqZ . . ’ 02 C 0. Noting that W = 

0:’ OF .Oz is an open neighborhood of x, we can find an open neighborhood V, of 

xsuchthat~~W~O.SowehaveU\~~U\O>_Oi,fori=l,...,n.This 

implies that (U \ IQ > Of’ . . .O? 2 E. Therefore (U \ Vz) = (U) = G, as required. 

The last statement of the lemma is obvious. 0 

Theorem 2.2. Every countable Hausdoti topological group G has a closed discrete 

subset S such that (S) = G. In particulal; S is a suitabZe set for G. 
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Proof. If G is discrete or finitely generated, then the claim is trivial. So we can assume 

G is neither discrete nor finitely generated. Let G = {gn: n < w}. It suffices to find a 

subset S of G such that (S) = G and, for each n < w, an open neighborhood U, of gn 

such that U, n S is finite. 

For this it will suffice to find for each n < w a clopen set V, in G and a finite set 

S, C G such that 

(i) gn E KJ U VI U.. . U V,; 
(ii) G = (G \ (VO U Vj U . . U I&)); 

(iii) for n > 0, V, C G \ (Vi U VI U . . U &I); 
(iv) K fl S, = 0, for i < n; and 

(v) gn E (So u s, u . . u S,). 

That the above suffices is clear by putting U, = VO U VI U . . . U V, and S = Un_ S,. 

We shall define the sets S, and V, inductively. 

Put So = {go}. As G is a countable topological group it is O-dimensional (see [8, 

6.28 and 6.2.6]), so applying Lemma 2.1 with G as the open set containing go, we find 

a clopen neighborhood VO of go such that G = (G \ VO). And these have the required 

properties. 

Now assume that finite sets SO, S1, . . . , Sk and clopen sets Vi, VI, . , Vk are defined 

and have the above properties (i)-(v). If gk+l E (SO U SI U . . . U Sk), put Sk+, = 8. If 

gk+l $ (SOUSE I-J.. .USk), then by (ii) there exist yr, ~2,. . , urn E G\(VOUVI U.. ‘UVk) 

andEr,~2,...,&~ = fl SUChthatgk+r =y;‘~;~...y%.PtrtSk+, = {y,,y2,...,ym}. 

So in both cases (iv) and (v) are true. 

Now if gk+l E Vi U VI U . . . U V,, put Vk+l = 8. If gk+] $ VO U v U “’ U V,, 

then Lemma 2.1 shows that there exists a clopen neighborhood v!+] of gk+l such that 

vk+r c G \ (vu u vr U.. . U Vj) and G = (G \ ( VO U VI U . . U Vk+ 1)) . It is easily seen 

that conditions (i)-(iii) are also satisfied in both cases. 

So by mathematical induction the sets S, and V, can be defined for all n with the 

required properties, which completes the proof. 0 

Remark 2.3. Note that the above theorem says more than every countable Hausdorff 

group has a suitable set. Firstly the suitable set is closed. Secondly, the suitable set 

generates the group algebraically-it is not necessary to take the closure of the group it 

generates. 

Open Question 1. Can there be found (without the assumption of axioms beyond ZFC) 

an example of a separable Hausdorff topological group which does not have a suitable 

set? 

In Section 3 we produce such an example (indeed one which is countably compact) 

under the additional assumption of the Continuum Hypothesis (CH) or Martin’s Axiom 

(MA). By contrast, in Section 5, we show that every separable metrizable group has a 

suitable set. 

A question more general than Open Question 1 is the following one. 
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Open Question 2. Can there be found (again without the assumption of axioms beyond 

ZFC) an example of a Hausdorff topological group G which has a dense subgroup H 

with a suitable subset, but G itself does not have a suitable set? 

Remark 2.4 [Added April, 19971. We are indebted to Artur Tomita for the observation 

that Open Question 2 can be answered without difficulty on the basis of the results of 

Section 3 below. Indeed, let X be an uncountable discrete set, let G = F(PX) be the free 

abelian topological group on @X (cf. Definition 3.2 below for the relevant definition), 

and let H = (X) be the subgroup of G algebraically generated by X. Then N is 

dense in G, the discrete set X generates H algebraically and hence topologically, and 

x = H n b(X) is closed in H. Hence X is a suitable set for H, while according to 

Corollary 3.10 the group G itself has no suitable set. Independently after this manuscript 

had been completed, one of the present authors (TkaEenko) had constructed a similar 

example. 

We are grateful to Professor Tomita for permission to cite this argument here. 

3. Groups without suitable sets 

Remark 3.1. If X is any Tychonoff space, then ,0X denotes the Stone-Tech compact- 

ification of X. In the terminology of Gillman and Jerison [9], a topological space X is 

said to be an F-space if every finitely generated ideal in the ring C(X) is principal. 

Every countable (discrete) subspace of an F-space is C*-embedded and in a compact 

F-space every infinite closed set K contains a homeomorph of the space ,0N (and hence 

satisfies IKl > 2’ [24, 1.641). Among the spaces known to be F-spaces [9, pp. 210 and 

2151 are: every discrete space; every space Y with X C: Y C PX and X an F-space; 

every space @X \ X with X a locally compact F-space; every space PX \ X with X 

locally compact and a-compact. In particular we note that if D is any infinite discrete 

space the spaces ,BD and /ID \ D are compact F-spaces. Further, writing IR = R+ U EL 

as usual and taking X = R U EBw = PlR \ [&‘” \ R], the space /3X \ X (which is 

F”” \ R+, that is, one of the connected components of /3lR \ R) is a compact connected 

F-space. 

Definition 3.2. Let X be a Tychonoff space. Then the topological group F(X) is said 

to be the (Markov) free abelian topological group on X [20,21] if X is a subspace of 

F(X) and for every abelian topological group G and every continuous map of X to G 

extends uniquely to a continuous homomorphism of F(X) into G. 

It is known that for every Tychonoff space, F(X) exists and is unique. 

We now present some preliminary results needed to show that certain free abelian 

topological groups have no suitable sets. 

Lemma 3.3. Let Fo, FI , . . be a sequence of closed subsets of /3N\ N such that @I\ N # 

UnEW F,. There exists an injnite subset P of IY such that ? n (UnEN Fn) = 0. 
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Proof. It is well known that each nonempty Gs-set in ,HV \ N has nonempty interior 
[9, 6S.81. Therefore, (PlV \ N) \ UnEN F, contains a nonempty set V which is open in 

@I \ N. By 6S.4 of [9] the sets of the form ?” \ N, where A is an infinite subset of N, 
form a basis for the topology on PN \ N. Therefore there exists an infinite subset P of 

N with ?” \ N & V. Clearly this P has the required property. 0 

Notation 3.4. Let X be a set and n E N, n 2 1. We say that a point 2 E X” is in 
general position if all of the coordinates of z are different. 

Lemma 3.5. Let X be a compact F-space. Then for each integer n > 1 the subspace 

S, of X” consisting of points in general position is countably compact. 

Proof. For X finite we have S, = 0 (hence, countably compact) when n > [XI, and 
S, is closed in Xn (hence is countably compact) when n < 1x1; we assume henceforth 
that X is infinite. It is clear that 5‘1 = X is compact. Let A be an infinite subset of 
S, c X”, n 2 2. It suffices to show that A has a cluster point in S,. Denote by pi the 
projection of X” onto the ith factor, 1 < i 6 n. If pi(A) is finite for some i < n, there 
exist a point zr E X and an infinite subset B of A such that B c pi’ (x). Otherwise 
we can choose a countably infinite subset C of A satisfying pi(a) # pi(b) for distinct 
a, b E C. Thus, we can find a countably infinite subset D c A such that the following 
condition is fulfilled for each i < n: 

either Jpi (D) I = 1 or pi(a) #pi(b) for distinct a, b E D. (*> 

Without loss of generality one can assume that lpi(D) I = No for each i with 1 < i < k 

and Ipi (D)I = 1 for each i > k, where k 6 n. Let a point ac E D be arbitrary. 
Suppose that the points aa, . . . , a, E D have been defined for some T < w. But X,. = 

PI(&) U ... Up,(&), where ET = {a~, . . . , a,}. Since IX, ) < nr < w, the condition 
(*) and the definition of k imply that for each i < k there exist only finitely many points 
y E D with pi(y) E X,.. Thus, we can find a,.+~ E D with pi(a,.+l) $ X,. for each 
i < k. 

From the definition of the set E = {a,: r < w} it follows that pi(E) is infinite for 
each i 6 k and pi(E) npj(E) = 0 for all i,j 6 k, i # j. Let EO be an infinite subset 
E such that pi(Eo) is discrete for each i 6 k. Our aim is to define an infinite subset E* - - 
of EO so that pi(E*) npj(E*) = 0 for all distinct i,j < k. 

For every z E Eo, put F, = {p*(x), . . . ,p,(z)} npi(Ea). Obviously, F, is a finite 
subset of pl(Eo)\pl(Eo), and hence is closed. Since pi(Ea) is countably infinite and 
discrete in the F-space X, the set pl(Eo)\pl(Eo) is homeomorphic to pN\N. Apply 
Lemma 3.5 to choose an infinite subset El of EO so that 

( > u Fx nPl(El) =0. 
ZEE, 

This gives us pj (El) n pi (El) = 0 for each j # 1. 
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Apply the same procedure for i = 2, . . . , k and define a decreasing sequence Eo > 

E, > E2 > .+. > Ek of infinite subsets of EO satisfying 

pj(Ei) npi(Ei) = 0 for each j # i. 

Clearly, the set E* = Ek satisfies pj(E*) npi(E*) = 8 for all distinct i,j < k. The 

latter means that Y = UiGk pi( E*) . IS a countable discrete subspace of the F-space X, 
- - 

whence pi(E*) npj(E*) = 0 whenever i,j < k, i # j. 

If y is a cluster point of E* in X”, then pi(y) E pi(E*) for each i f k so that 
pi(y) # pj(y) for distinct i,j < k. This gives us a cluster point y E S, for E* if 
k = n. The case k < n requires more work. Let pi(D) = {ICY}, k + 1 < i < n. Choose 
disjoint infinite subsets E’, E” of E*. Then pl(E’) and pt (E”) are disjoint subsets of -~ 
the discrete set Y, whence pl (El) fl pl (El’) = 0. Therefore, either zk+i 4 pl (E’) or 
~k+~ $ pl(E”). We put Qi = E’ in the first case and Qt = E” otherwise. Continuing 
this way we define infinite sets Qi > Qi > . . . > Qh_, satisfying zk+i $ pl (Qi) for 

i= l,... , n - k. Put Q’ = Qk_,. Clearly, {zk+i,. . . ,x,} np,(Ql) = 0. 

Repeat this procedure considering the projection & and define an infinite set Q2 c Q’ 
satisfying { z:lc+t , . . . , 2,) n p2(Q2) = 0. At the step k we shall have an infinite subset 
Qk of Q”-’ with 

{xk+l,.. . , 2,) n pi(Qk) = 0 for each i 6 k. (**> 

Put E, = Qk. Then (**) and the choice of the set E* imply that every cluster point of 
E, belongs to S,. This completes the proof. 0 

Lemma 3.6. Let X be as in Lemma 3.5, and let Xi = X, for i = 1,. . . , n + 1, n E N. 
Let B be an infinite subset of the product X*+’ = Xt x . . . x X, x Xn+t. n b 1, and 

p,(b) = p,+l (b) for each b E B, where pi : Xnf ’ -+ Xi is the projection mapping. If 

~~+1 (B) has a cluster point a = (al, a2,. . . , a,), then (~1, a~,. . . , a,, a,) is a cluster 

point of B, where x,+1 : Xn+’ + XI x X2 x . . . x X, is the projection omitting the 

(n + 1)st coordinate. 

Proof. Substituting Xi x . . . x X,-i by a single factor, it suffices to consider the case 
n = 2. Let (at, ~2) be a cluster point of 7r3(B) G X1 x X2 and 0 = 01 x 02 x 0s be 
an open neighborhood of the point a* = (at, r42, ~2). Put 0; = 02 tlO3. By assumption 
there exists a point b E B with ?r3(b) E 01 x O?, whence b E 01 x 0; x 0; C 0. This 
proves that 0 n B # 0 for any neighborhood 0 of a*. 0 

Lemma 3.7. Let X be a compact F-space, B an infinite subset of X” (n > 1) and 

6 E {+l, - l}n. L-et F(X) be the free abelian topological group on X and js the 

multiplication map of X” into F(X) given by js(q, . . . , z,) = XT’ . +. ~2, where 6 = 

(El,... , Ed). If j&(b) has length n for each b E B, then there exists a cluster point a of 

B such that js(u) also has length n. 

Proof. We apply mathematical induction on n. If n = 1, the mapping j$ : X + F is 
a homeomorphic embedding and the claim is obvious. Now assume that the lemma is 
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proved for n = m, and let n = m + 1. Let S, be a subset of X” consisting of points in 

general position. If the intersection B n S, is infinite, it suffices to use Lemma 3.5 and 

the continuity of the mapping ~‘6, 

Otherwise one can assume that B and S, are disjoint. Every point b E B has at 

least two equal coordinates and since B is infinite, there exist indices k, 1 < n, k < I, 

and an infinite subset C & B such that pk(z) = pl (z) for each 5 E C, where pk 

and pi are respectively the projections of X” onto the kth and Zth factors. Let 6 = 

(El,... , E,). Then &k = EL, for the length of j6(b) is n for each b E C (and C is 

not empty). Denote by ~1 the projection of X” onto X” omitting the Zth coordinate: 

7Q(2i,. . . ,2j,. . . ,z,) = (ICI,. . ,&, . . . ) a,). By the inductive hypothesis there exists 

a cluster point a = (ai, . . . , ak, . . , &, . . . , an) of nl(C) in X” such that the length 

of j,f (a) is equal to m, where 15’ = (&I,. . . , &k, . . . , &, . . . , En). By Lemma 3.6, a* = 

(oi,...,uk ,..., al ,... , a,) with al = ak is a cluster point of C and one easily sees that 

the length of jb(u*) is 72, for ek = El. 0 

Theorem 3.8. Zf X is a nonseparable compact F-space, then the free abelian topological 

group on X, F(X), does not have a suitable set. 

Proof. Case 1. JSI < w. Each s E S is a word using finitely many symbols of X. All told, 

the (minimal) set C of symbols from X needed to give S is then countable. Since X is not 

separable there is continuous f : X + T such that flC = 1, and some p E X satisfies 

f(p) # 1. The continuous homomorphism h from F(X) extending f then satisfies 

h = 1 on F(X) ( since C generates that group topologically) but h(p) = f(p) # 1, 

contradiction. 

Case 2. ISJ > w. Algebraically F(X) is the free abelian group on X. For each integer 

k > 1 and each sequence S = (~1,. $&k) E (-1, +l}“, denote by j6 the mapping 

of X” to F(X) defined by j, (21, . . . , Zk) = ~5’ . . . xEk . Considered as a mapping to 

F(X), the mapping Jo is continuous in each case. Clearly, we have 

F(X) = u {jb(X’): k E W, 6 E {-l,+l}“}. 

Therefore, there exist k E N and S E { - 1, +l}” such that the intersection S fl ja(X”) 

is infinite. Let 72 be the minimal integer with this property, and choose 6 E { - 1, + 1)” 

corresponding to this rz. By the choice, there exists a countably infinite subset A c 

S nj,(X”) all elements of which have length exactly n. Put B = j;‘(A). Note that the 

mapping js : B + F(X) is finite-to-one (in fact, Ij;‘(g)l < n! for each g E A). Since A 

is discrete, we conclude that B is countably infinite and discrete. By Lemma 3.7, there 

exists a cluster point y of B in X” such that the length of $5(y) is equal to 72. Thus, 

g = ja(y) is a cluster point of A and g # eF(X). This contradicts the fact that S (and a 

subset A of S) has no cluster points in F(X)\{eF(x)}. The same argument shows that 

S cannot be suitable for F(X). 0 

Remark 3.9. In Theorem 3.8 we do not use all the power of the assumption on X that 

it is an F-space; rather we used only that every countable discrete subspace of X is 

C*-embedded in X. 



Corollary 3.10. !f S is my uttcounrddr discrete space, theta F( ;-1,Y) has no suitable 

SC’T. 

Later we shall show that if .Y is a countable discrete space, then I;( :jS) does have a 

suitable set. 

Corollary 3.11. [f-Y i.5 (02~ infinite discrete spuce, thetr E’( ,j_X \ _Y) bus no suitublr set. 

Corollary 3.12. !f’ _I’ i.s II cwttttrc~ted cwtymtent in :-IIIF. \ R. thrtt F( _‘i) has no slritcthle 

.Wl. 

Recall that a \wr-iety qf topological ,~mup.s [K?] is defined to be a class of topological 

groups closed under the formation of subgroups, quotient groups. and arbitrary Cartesian 

products. 

Remark 3.13. We now observe that a dense subgroup of a topological group with a 

suitable set may itself fail to have a suitable set. 

Corollaries 3.10. 3.11 and 3.12 remain true if we replace free abelian topological group 

by free topological group in the variety, g(T). of topological groups generated by the 

circle group, T. In particular if S is as in Corollary 3.12, then F(X.ZJ(T)) has no 

suitable set: but it is a Ir-compact connected dense subgroup of its closure in 7I”. and 

that clohure. like every compact connected abelian group of weight not exceeding c, is 

monothetic (cf. [ 1 I. 25.141) and hence has a one-element suitable set. 

Remark 3.14. In the above corollaries we produced examples of topological groups 

without suitable sets which had cardinality at least _ 7c However. it is possible to modify 

Cot-ollury 3.1 1 to produce in ZFC a Hausdorff topological group of cardinality c with no 

suitable set. 

We will define a nonseparable subspace I” of ;1’M \ N with II-1 = c such that the set 

1-I’ -‘,Y,, ia countably compact for each integer rj > I. where S,, is the subset of (:?N\N)” 

conzisting of points in general position. Then the free abelian topological group F(I-) 

alxo is not separable and the argument in Case 2 of the proof of Theorem 3.8 shows that 

E’( 1. ) has no suitable set. 

Kow let us define 1.. For every integer II 3 1 and every countably infinite subset AA 

of ,s’,,, take a point .r(.A. r/) t 2 17 S,,. by Lemma 3.5. Let -, be an uncountable family 

of nonempty diqjoint open subsets of .jN \ N (see Example 3.6. I8 of [8]). By transfinite 

recursion one detines an increasing chain 1;). I-1.. .x,. . r) < dl. of subsets of 

,jpJ !,, Pi satisfying the following conditions for each ck < &*I: 

(0) I;, intersects every member of the family a,: 

( I) 11;) 1 < e: 

(7) it’ II .,> I and *-I is a countably infinite subset of ‘1;:’ TI S,,. then every coordinate 

of the point J(~A. rt) belongs to 1;,+1. 

l.et I- be the union of the sets I;,. (t < d:~~ Since I;, C 1’. from (0) it follows that Y 

is not separable. It remains to show that I?” I-S,, is countably compact for each 11 E N&. 
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Let A be a countably infinite subset of Y” n S, for some n 3 1. Since the sequence 

Yo,K ,..., Y, . . . . is increasing, there exists Q < ull such that pl (A) U. . Up,(A) c Y,, 
where pi is the projection of (pN\ N)” onto the ith factor, 1 < i < n. Then A c Y,” nS,, 

whence s(A, n) E 71 n Y a+l n S, C Yn n S,. This proves our claim. 0 

Now before giving a partial response to Open Question 1 of Section 2, we recall 

Martin’s Axiom (MA) which is independent of the usual axioms of set theory (ZFC). 

We state it in a topological form (see [24]). 

Martin’s Axiom. If X is a compact space in which every collection of disjoint open 

sets is countable, then X is not the union offewer than c nowhere dense subsets. 

Theorem 3.15. In the axiom system ZFC + MA there is a separable group with FZO 

suitable subset. 

Proof. It is proved by van Douwen [7, 8.11 in that axiom system that the Boolean 

group { - 1. + 1 }’ contains a (dense) separable countably compact subgroup G with no 

convergent sequences. As remarked by van Douwen himself (lot. cit., 6.1), in such a 

group G every infinite subset A satisfies 12’1 > c. It is therefore clear that G has no 

infinite suitable set. That G has no finite suitable set is also clear: G itself is infinite. but 

every finite subset of G generates a finite (hence closed) subgroup. 0 

Open Question 3. Does there exist in ZFC a pseudocompact Hausdorff topological 

group with no suitable set? 

Remark 3.16 [Added April, 19971. In joint work in progress, one of the present co- 

authors (TkaEenko) and Dikran Dikranjan and Vladimir TkaEuk have answered Ques- 

tion 3 affirmatively. Indeed. the example (in ZFC) may be chosen d-bounded in the sense 

that each of its countable subsets has compact closure. A manuscript is in preparation. 

4. Groups with suitable sets 

Let G = fli,, G, be a Cartesian product of topological groups Gi. For every element 

x E G, denote supp (z) = {i E I: zi # li} where 1 i is the identity of G,. It is easy to 

verify that the sets 

@ G, = {X E G: lsupp (z)I < NO} and c Gi = {.r E G: /supp (.z)I < No} 
iEI iE1 

are dense subgroups of G; these are called, respectively the u-product and C-product of 

the groups Gi. 

Theorem 4.1. Let H = eiE1 Gi, A = CIEr Gi and G = ni,, Gi, for any index set 

I. If each Gi has a suitable set then H, A and G each have a suitable set. 
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Proof. Let Si be a suitable set for G,, for i E I. We assume without loss of generality 

that 1, $ S,. Define S = Uztl (S; x {II\~i)}). 

5 is discrete. Given p = (.r,. lI\{i} ) E S there is a neighborhood Ui of s, in G, such 

that 1 I, +$ U, and U, n S, = { .I.,}. Let K; be the projection mapping of G onto G,. Then 

7r,‘(Uil) n S = {p}. 

sU{l} : 1, d is c aye irz G. Suppose that J’ is an accumulation point of S U { 1 }, with 

J +! S U { 1). If some two distinct elements i and .j of 1 satisfy rTTI (CC> = xi # I 1 and 

n,] (.I-) = .rj # lj then we readily find a neighborhood U of :r (of the form 7r,’ (U,) fl 

71;’ (U, )) such that lJ n (S U { 1}) = 8, a contradiction. Thus T; # li for exactly one 

i E I. Then J, E Si is impossible since S, is discrete, and s.i $ Si is impossible since 

Si CJ {I ,} is closed in G;. 

Being a subset of H which is closed in G. S U {l} is closed in H. It is clear that S 

generates a dense subgroup of H. The proof that S is suitable in H is complete. 

Since H is dense in A and in G we have: S generates A topologically and S generates 

G topologically. 0 

Theorem 4.2. Let H be an open subgroup of a topological group G. If H has a suitable 

set, therl G has a suitable set. If H has a closed suitable set, then G has a closed suitable 

set. 

Proof. Let S be a suitable set for H and let A select one point from each coset of H in 

G; that is, n: E G implies IA f? sHI = 1. We claim that S U A is suitable for G. Surely 

S U A is discrete, and 1 is its only (possible) accumulation point. Further, S generates a 

dense subgroup of H; so S U A generates a dense subgroup of G. If S is closed in H, 

then S U A is clearly closed in G. 0 

The next theorem is a special case of one which we shall prove later. However, its 

proof yields information we use in the next result. 

Theorem 4.3. Let G = (G. p) be a metric group uith a suitable set X, and let H he a 

dense subgrolq of G. Theta H has a suituble set. Furihel: if X is cc closed suitable set 

,for G, then H has a closed suitable set. 

Proof. Let X = {.ri: % E I} be suitable in G. Since X is discrete and G is metric, X 

is strongly discrete in the sense that its elements admit pairwise disjoint neighborhoods 

BE2 (ai ), where BE(z) denotes the open ball with respect to the metric p with center z 

and radius E. For i E I we shall define a set x C H and then Y = uiE1 Y;; and then 

show that EI is suitable for H. 

If .I’, E H we take 1, = {xi}. If rc, $ N we choose a faithfully indexed sequence yl,IL 

in N with s,, as limit: indeed we choose y,,,? E B C,l’3(.ri); then, we take Y, = {yl.,,: 11 < 

UJ}. Put 1’ = UIEI 1;. 

E’ is discrete. If y = LC~ E 1’ then BE, (.r,) n Y = {y}. If :y = ~,i,~ E U, & 1’ then 

since the sequence {;21[,k: A: < d} is discrete there is a neighborhood U of ?J meeting no 

point 3,i.k (same i) when k # II. Then (U n Bc,i3(y)) n I’- = {J}. 



36 bVU! comfort et al. / Topology and its Applications 86 (1998) 2546 

Y generates H topologically. The closed subgroup of G generated by Y contains X, 

hence is G itself. Thus the closed subgroup of H generated by Y is H. 

Y U {I} is closed in H. Let p E H be a limit point of Y. We will show that p = 1. 

Let (2,: k < w} be a sequence in Y converging to p. 

Case 1. -7k has a subsequence of points of the form xi, say ok = xik E X. Then 

xii, -+p~Gsop=l. 

Case 2. Case 1 fails. Passing to a subsequence if necessary, we assume each zk has the 

form _‘k = Yik,ne. Note that no fixed i E 1 arises infinitely often. For if U’k = Yi,nE for 

fixed i and for infinitely many k < w then & -+ Xi 6 H, a contradiction since p E H. 

We assume therefore, passing to a subsequence if necessary, that z,+ = yik,nb with the 

indices ik pairwise distinct. 

We claim in this case that E,, + 0. If not, passing again to a subsequence, we have 

(for some E > 0) that &il, > E for all I;. Now let 1 and m be distinct values of k; without 

loss of generality we assume E/ < Ed. Since ICI $ BEm(x,), p(q,x,) > E,. Also 

P(X Tll> 2rn ) < ~,/3 and ~(-L.I, 21) < EL/-~ < ~,,/3. Hence p(zl, 2,) > ic,,,/3 3 c/3. This 

is a contradiction as the sequence zk converges to p. So the claim is proved. 

Now from Zk 4 p and Zk E BEL,, (xilc) and ~~~ --f 0 follows rib ---) p E G with 

xin E X. Thus p = 1, as desired. 

Finally, it is clear that if X is closed in G. then Y is closed in H. 0 

The following is a corollary of the proof of Theorem 4.3. For the statement re- 

call that if the topological group G has a suitable set, then we define s(G) to be 

min{lSI: Sis a suitable set for G}. 

Corollary 4.4. Let G be a metrizable topological group with a suitable set and let H a 

dense subgroup. Then s(H) < max{s(G),ti}. 

Remark 4.5. Firstly we note that Q is a dense subgroup of R and s(Q) = w while 

s(Iw) = 2. So, in the notation of Corollary 4.4, we can have s(H) > s(G). 

Remark 4.6. At first sight one might think that if H is a dense subgroup of a Hausdorff 

topological group G and both have suitable sets then s(H) would be no larger than s(G). 

This is certainly false. For example, if Gi, i E I, is such that each Gi is topologically 

isomorphic to T and 111 = c, then H = Ci,t Gi is dense in G = ni,, Gi, while 

s(H) = c. and s(G) = s(‘ITc) = 1. Note that this demonstrates that if the condition of 

metrizability were deleted from the statement of Corollary 4.4 then it would be false. 

Indeed we know of no example where s(H) < s(G), for H dense in G. [Note added 

April, 1997. Recently Dmitri Shakhmatov has provided such examples.] 

Theorem 4.7. Let G be any Hausdofltopologicnl group. Then there exists a Hausdot# 

topological group F such that G is topologically isomorphic to an open subgroup of F 

and F has a closed suitable set: indeed F is generated algebraically by a closed discrete 

subset. 
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Proof. Given G, let H be the underlying group of G with the discrete topology. Define 

F = G x H. Then G is an open subgroup of the topological group F. 

Let G = {.r:: [ < K} and H = {III:: < < K}. For each <. choose yc E G x { UI~}- 

for example, z/c = (.cc. w;)-and define 2~ = {I/E (xc. 1 )-I. Since (SC, 1) = yt zc’, 

the point (SC, 1) (which we have identified with .r:) lies in any subgroup of F which 

contains both !/c and Q. Thus the set zA := {!I:: < < K} U {q: ( < 6) generates F 

algebraically, hence topologically. Clearly A is closed and discrete in F, since (a) the 

open sets G x {QUIZ} are disjoint and cover F and (b) the intersection of A with G x {AUNT} 

is the two-element set {.y:. zc}. 0 

Remark 4.8. Since there are Hausdorff topological groups with no suitable subset, the 

result above provides a strong negative answer to the question: does every open subgroup 

of a topological group with a suitable set itself have a suitable set? 

Remark 4.9. The proof of Theorem 4.7 also shows that a Hausdorff quotient group of 

a topological group with a suitable set need not have a suitable set. 

5. Separable topological groups 

Recall that a Tychonoff space X is called a k,-space [ 191 if it has compact subspaces 

X,,. n E N, such that X = UllEW S,,, and a subset A of X is closed in X if and only 

if A n X,, is compact for each n E N. Our approach to the proof of Theorem 5.1 uses 

Stone-Tech compactifications in the manner introduced in [lo]. 

Theorem 5.1. Let X be a separable 7fvchonoff space and let F(X) be the free abelian 

topological group on X. Then F(X) has a closed suitable set. 

Proof. If X is finite, then F(X) is discrete, and clearly F(X) has a closed suitable set. 

So without loss of generality, assume that X is infinite. 

Let F( /jX) be the free abelian topological group on the Stone-Tech compactification. 

/IX, of X. The natural map 4 of X into /3X extends to a continuous one-to-one homo- 

morphism @ of F(X) into F@S). Then F(4X) is a k,-space with ,k,-decomposition 

F(,JW = U,ltPf F, (/3X), where F,, (!YX) is the set of all words in F(dX ) of length 

with respect to $X of length < II. 

Let E’ = {yt. ~2,. . . yTL>. .} be a dense subset of X. Put 

s = {!/I. ,yiy?. 1 !/I y2. ” !/n., .>. 

Clearly each of the sets 

@(SJnE,(dX) = {~(y,).~(~yly7)~....Q3(y,!/2.‘.y,l)} 

is finite, so Q(S) is closed in F(PX). Indeed for each subset T of S, Q(T) n F,,(:jX) 

is finite. Thus Q(T) is closed. Hence Q(S) is discrete. Therefore S is a closed discrete 

subspace of F(X). 
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As (S) contains Y, (S) contains X and hence equals F(X). Thus S is a closed 

suitable set for F(X). q 

Remark 5.2. Theorem 5.1 remains true if free abelian topological group is replaced by 

free topological group. 

Definition 5.3. A topological group G is said to be totally bounded if for every nonempty 

open subset U of G there is finite F C G such that G = FU. For pi an infinite cardinal, 

the topological group G is said to be r;-totally bounded if for every nonempty open subset 

U of G there is F C G such that IFI < K, G = FU. (So, totally bounded is w-totally 

bounded.) 

Every group G is [G/+-totally bounded, where /G/+ denotes the first cardinal greater 

than /GJ. 

Notation 3.4. Given a topological group G, let b(G) (the boundedness number of G) be 

the least cardinal r; such that G is K-totally bounded. 

Remark 5.4. The condition K < b(G) means that for some nonempty open subset U of 

G no F C G with IFI < K satisfies G = FU. It is then easy using induction to find a set 

{xc: < < 6) C G such that each xc satisfies xc $ UnCE .c,,U. It then follows for some 

nonempty open neighborhood V of 1 that some n-many translates of V form a pairwise 

disjoint family which is uniformly V-discrete in the sense that for each p E G the 

neighborhood pV of p meets only finitely many members of that family (in fact, at most 

one). Indeed given U as above, with U a neighborhood of 1. let V be a neighborhood 

of 1 such that V = V-’ and V” 2 U. Then {x(V: E < K} is a disjoint, uniformly 

V-discrete family: given p E G, the neighborhood pV of p meets at most one of the sets 

rcV. since if zji E V (with 1 < i < 4) satisfy pvl = S~Q and ~2’3 = .c,,rl~ with q < < 

then xc = z~~z~~(u~)-~zJ~ (,uz)-’ E x,VJ C .c,,U, a contradiction. 

Notation 3.4. We write d(G) for the density character of G, that is the least cardinal of 

a dense subset of G. 

Theorem 5.5. Every topological group G satisfies b(G) < (d(G))+. 

Proof. Suppose instead that b(G) > (d(G))+, so there is E such that d(G) < K < b(G). 

Since K < b(G) there is (according to Remark 5.4) an open neighborhood V of 1 and 

a subset X of G with IX = K, such that the sets .cV with :r E ,rr’ are pairwise disjoint. 

This is incompatible with the condition cl(G) < K. 0 

Remark 5.6. 

(a) The “gap” between b(G) and d(G) may be arbitrarily large. For examples to this 

effect let (Y > w and define K = (2”)+. Then with G = {- 1, +l}& or G = T” 

we have b(G) = ul since G is compact, but d(G) = log(,ni(G)) = log K > o (cf. 

[8, 2.3.251 or [3. 3.9(v)]). 
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(c) 
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For metrizable groups G the inequality b(G) < (d(G))+ can be sharpened to 

read d(G) < b(G) < (d(G))+. with b(G) = (d(G))+ in the case cf(d(G)) > UJ. 

To see this let /I be a left-translation-invariant compatible metric for G and for 

0 < I1 s: LJ let D, be a maximal l/n-dispersed subset of G (in the sense that 

D,, is maximal with respect to the property .I’, ,y E D,,. s # y + p(.r. y) 3 l/n) 

and set ID,,/ = hi,). Each set of the form pB,!,z,,( 1) (1-, E G) contains at most 

one element of D,. so no F C G with (Fl < K,( satisfies G = FBI,?,,(l). Thus 

b(G) > K: for each ?I < UJ. so b(G) > IDI 3 d(G). If cf(d(G)) > u: then 

some h‘,, satisfies K,, = cl(G) and we have d(G)+ = 6; < b(G) < (d(G))+, as 

asserted. 

The relation d(G) = h(G) can occur for metrizable groups (with cf(d(G)) = ti). 

Given a strictly increasing sequence ti, of infinite cardinal numbers, set K = 

sup{~~,: 1) < UJ}, choose (discrete) groups G, with /G,, 1 = /cn and let G be the 

product group nnCw G,, with the usual product topology. Every basic neighbor- 

hood lr of 1~ has the form 

CT = n n;Ll {ln) = (1~) x n G,,. 
II < N n>N 

for some N < in’ (and with H := nnCN G,,): since IHl = nnGN K, = KN < K, 

fewer than K-many translates of U suffice to cover G. It follows that b(G) < K = 

u)(G) = d(G), as asserted. 

In view of Theorem 5.5, the hypothesis “d(G) < b(G)” in the next theorem is 

equivalent to the condition b(G) = (d(G) )+ 

Theorem 5.7. Let G be a Hausdorff topological group such that d(G) < b(G). Then G 

has a closed suitable subset. 

Proof. Let PC = d(G) and (using Remark 5.4) choose {PC: < < PC} C G and an open 

neighborhood V of 1 such that each set of the form pV (with p E G) meets at most 

one of the sets pcb-. Since V is open we have d( I’) 6 K so there is a (not necessarily 

faithfully indexed) dense subset {XC: < < K} of V. For each < < K, let yc = pcx~. Then 

define 

s = {pc: ; < K} u {y:: < < K}. 

and let H be the (open) subgroup of G generated by V U {p<V: < < K}. Then S C H. 

The subgroup of G generated by S contains for each < < K the point xc = (PC)-’ ye, so 

the closure of that group contains V and hence H. Each point p in G has a neighborhood 

(namely pV) which meets at most one of the sets pgV; this neighborhood contains at 

most two elements of S. Thus S is closed and discrete in G. The upshot is that S is a 

closed suitable subset of H. with H an open subgroup of G. Then G itself has a closed 

suitable subset, by Theorem 4.2. 0 

Corollary 5.8. Eve? separable Hausdoe topological group which is not totally 

bounded admits a closed suitable subset. 
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Proof. Such a group G has [l(G) = LJ and b(G) > UJ so Theorem 5.7 applies. 0 

Corollary 5.9. Let G be a Hausdotftopological group with a nonempty open subset U 

such that d(U) < b(G). Then G has a closed suitable set. Thus every locally separable 

Hausdo@ topological group which is not totally bounded has a closed suitable subset. 

Proof. We take 1 E U. With IF. = d(lr) < b(G), again from Remark 5.4 there is an 

open neighborhood V of 1 (with V C U) and {PC: < < h} C: G such that the family 

{pgV: [ < K} is uniformly V-discrete. Now with {XC: < < K} chosen dense in V, the 

proof proceeds and concludes verbatim as in Theorem 5.7. 0 

The next corollary will be subsumed in a more general result later, but the proof is 

quite different. 

Corollary 5.10. E\lev locally separable metrizable topological group has a suitable 

subset. 

Proof. If such a topological group G is not totally bounded then Corollary 5.9 applies. 

If G is totally bounded then its Weil completion [25] G is compact (hence, complete) 

and metrizable. By Theorem 1.2, c admits a suitable subset. Theorem 4.3 implies that 

a dense subgroup (in this case, G) of a metrizable group with a suitable subset (in this 

case, G) itself has a suitable subset. 0 

It should be noted that neither Corollary 5.10 nor Theorem 1.12 can be strengthened to 

demanding the existence of a closed suitable set. Theorem 5.11 shows that, for example. 

the compact group { - l> 1 }“, where K is any cardinal number 3 ti. has no closed suitable 

set. In particular, this is the case when K = d and the group is compact metrizable. 

Theorem 5.11. Let G be a countably compact Hausdoflgroup. If IGI > 2’ or G is an 

injinite abelian torsion group, then G does not have a closed suitable set. 

Proof. Let S be a closed suitable subset of G. Then S is a closed discrete subspace of 

the countably compact group G. Hence S is finite. Then I(S)1 6 2’. So if (GI > 2’, this 

is a contradiction and G has no suitable set. 

On the other hand, if G is an abelian torsion group, then (S) is a finite group and so 

is closed in G. Hence m is also finite and so does not equal G. In this case also G has 

no closed suitable set. 0 

Definition 5.12. A topological space is said to be of countable pseudocharacter if every 

singleton set is the intersection of a countable number of open sets. 

Theorem 5.13. Let H be a separable totally bounded Hausdo# topological group of 

countable pseudocharactel: If 5’ is a countable dense subgroup of H, then there exists a 

discrete subset L of S such that L is closed in H \ { 1) and S = (L). So L is a suitable 

set for both S and H. 
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Proof. Denote by G the completion of H. Then G is a compact topological group which 

contains H as a dense subgroup. Let 5’ = {s,,: 11 E UI} be a enumeration of S. Choose 

a decreasing sequence {lrll: II E d} of open neighborhoods of the identity PC; in G 

satisfying the following conditions: 

(1) Ii;+, c li,, for each ‘~1 E u?; 

(2) { 1~) = H n (n,,, IX. 
We shall construct by induction an increasing sequence {LA-: A* E UJ} of finite subsets 

of S to satisfy the following conditions for each k E w’: 

(i) .f’k E (Lk); 

(ii) L~+I \ Lk C Uk; 

(iii) G = (Lk) . 11,. 

Being dense in 11, the group S is dense in G. We have, therefore, the equality G = 

S . tic,. Since G is compact, there exists a finite subset Ka of S such that A-0 U” = G. 

In particular, there are (~0 E Ko and ~0 E r%, with .rl) = ua ~0. Then ,110 = no’ .r(I t S 

and we put La = Ka U {IQ}. It is clear that LO c S. 

Let ‘rt E (*i and suppose that we have defined an increasing sequence LO>. ~ L, of 

finite subsets of S satisfying (i)-(iii) for each k 6 n. Since S is dense in G, the set 

(U,, n S) is dense in the group G,, = (Uri). Obviously, G, is open in G, and hence 

is closed compact. Therefore, one can find a finite subset F,,+, of (U,, n S) so that 

F n+l . &,,I := G,. In particular, there exists a finite subset KrL+, of U,, n S with 

F,,+i C (K7,+1). whence (K,+i) Un+l = G,,. Put L:,,, = L,, U K,+l. By (iii), we 

have 

(&+,) . lJ,,+, = (Lln+,) (&+I) . U,,l = (L;,,,) G, > (L,,) Ii,, = G. (***) 

By (***), there are n,,+l E (LL,,) and U,+I E Ii,+, such that -1’,+1 = u,+~ u,,+~. 

Since a,+~ E (L’,,,) C S and x,+1 E S, we conclude that u,+.I E S and put L,+, = 

Lit+, U {u,+I}. CleW, L,+I is a finite subset of S and L, c L,+I . From (*w) it 

follows that (L,,+I) Ijr,+i = G. Thus, the conditions (i)-(iii) hold at the step n + 1. 

Put L = Untu, L,,. From (ii) it follows that L \ Uh c Lk is a finite set for each k E &I’. 

The latter, along with ( 1) and (2), implies that L is closed discrete subset of H \ { lH}. 

It remains to apply (i) in order to conclude that S = (L). The result is proved. 0 

Theorem 5.14. A locally separable Hausdor$ topological group of countable pseu- 

docharacter has a suitable subset. In particular a locally separable metrtable topo- 

logical group has a suitable set. 

Proof. Let H be a locally separable topological group of countable pseudocharacter. 

Then it has an open separable neighborhood U of the identity. Let G be the separable 

open subgroup of H generated by U. 

If G is not totally bounded, then G has a suitable set by Corollary 5.8. Otherwise let 

D be a countable dense subset of G and S = (D). Then S is a dense countable subgroup 

of G and an application of Theorem 5.13 shows G has a suitable set. Finally, as G has 

a suitable set Theorem 4.2 implies that H has a suitable set too. 0 
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Note that we now have two proofs that every (locally) separable metrizable group has 

a suitable set, see Theorem 5.14 and Corollary 5.10. In the next section we will prove a 

more general result. 

6. Metrizable topological groups 

Recall that a family {Pi: i E 1} of subsets of a topological space X is said to be 

locally finite if for each x E X there is an open neighborhood U of x such that U 

intersects only a finite number of the F,. 

The following lemma is easily verified. 

Lemma 6.1. Let X be a topological space and F a locally jinite family of subsets of 

X, each discrete and closed in X. Then UFEF F is discrete, and closed in X. 

Proposition 6.2. Let G be a topological group of countable pseudocharacter which is 

not totally bounded. If G has a suitable set S, then it has a closed suitable set S’. Furthel; 

if G = (S) then the closed set S’ can be chosen so that G = (S’). 

Proof. Let U be a neighborhood of 1 such that no finite F C G satisfies G = FU. 

Let ~0 $! U and recursively choose x,+1 E G\(U U UkGqL znU). Choose a symmetric 

neighborhood V of 1 such that V4 C U and note this: 

For every p E G the set pV meets at most one of the sets xc,V. (*) 

[Proof. If pwl = X,VZ and pv3 = x,vq, all 11, E V. say with n < m., then x, = 

x,v~u~‘u~v~’ E x,U, contradiction.] 

Now let {I} = n_ U,, with each U, open and with Un+l 5 U,. We assume 

without loss of generality, replacing U, by U, n V if necessary, that each U, C V. 

Define the (possibly empty) annulus A, by A, = Un\Un+, . 

Now let S be suitable for G. If 1 E S then S is closed and there is nothing to prove, 

so we assume 1 $ S. 

For n < ti define Xn = (5,) U x, . (A, fl S) = x,({ 1) U (A.,, fl S)), and define 

S’ = (S\Uo) u Un<w x,. 
We 

(1) 

(2) 

want to see that S’ is a closed suitable set. 

(S’) = G. It is enough to show that (S’) 2 S. Surely S’ 2 S\UO. If p E S n UO 

then since p # 1 there is a largest n < LJ such that p E U,. Then p E A, n S so 

P E x,‘(G&% n S)) c (5”). 
S’ is closed and discrete. According to Lemma 6.1, it is enough to see that 

(a) the set S\Uo is closed and discrete; 

(b) each set X, is closed and discrete: and 

(c) the family {X, : 72 < w} U {S\Uo} is locally finite. 

(a) Surely S\Uo is discrete. An accumulation point of S\Uo must be an accumulation 

point of S, i.e., must be 1; but Uo is a neighborhood of I missing S\Uo. Thus S\Uo is 

closed. 



(b) Conceptually it is easier to consider { 1 } U (A, M), of which X, is a translate. This 

set is closed because 1 adjoined to any subset of S yields a closed set. It is discrete at 

points of S, and it is discrete at I because U7,+, is a neighborhood of 1 whose intersection 

with this set is 1. 

(c) It is clear from (*) that the family {x,1 r: n < &J) is locally finite. Since X,, C: ,I’, tr 

(all 11) the family {X,: I) < ti} is therefore locally finite. Adjoining the single set {S’\~‘O} 

cannot destroy local finiteness. 

We noted in the proof of ( I ) that (S’) 2 S. Thus S’ generates G algebraically if S 

does. 0 

Theorem 6.3. Let G be n noncompact topological group of countable pseudocharacter: 

If G has a suitable set, then it has a closed suitable set. Further; if G = (S) then the 

closed set S’ can be chosen so that G = (S’). 

Proof. Consider two cases. 

Cuse I. G is not totally bounded. Then the claim follows directly from Proposition 6.2. 

Case 2. G is totally bounded. Denote by H the group completion of G. Then H is 

compact and EI # G because G is not compact. If G intersects every nonempty Go-set 

in H, then G is pseudocompact (see [3. 6.41: [4]). However. a pseudocompact group of 

countable pseudocharacter is metrizable, and hence compact [ 1, 3.11: [5], which gives us 

the contradiction H = G. 

We have thus proved that there exists a nonempty Gn-set P in H disjoint from G. 

Pick a point h E P. One easily defines a sequence {V,, : 71 E d} of open neighborhoods 

of h in H so that Vn+, C V,, for each n E ti and nnEd \:, c P. Let {Un: n E u)} be a 

sequence of open neighborhoods of 1 in H with the following properties: 

( 1) h . UT, 2 1; for each 71 E LJ; 

(2) Ui+, 2 U,, for each I). t CJ; 

(3) (1) =C:nr)nEL,U,,. 
For every 71 E w pick a point .I’,, E G n h U,, and put -4, = U,, \ CT,,+, and 

X,, = .I’, .({l}u(Sn&)). 
Let S be a suitable set for G. We claim that 

s’ = (S \, U,,) u u X,, 
rrEUJ 

is a closed suitable subset in G. 
- 1 

( I ) (S’)” == G. It is enough to show that (5”) > (S \ { 1)). Surely S’ > S \ UO. If 

[J E S r‘l Uo and p # 1. then there is the largest 11 < u: such that p t U,. Then 

IJ E A,, n S so p E :r,’ (z,, (.4, n S)) c (S’). 

(3) S’ is closed and discrete. According to Lemma 6.1, it is enough to see that 

(a) the set S \ I’0 is closed and discrete; 

(b) each set X,, is closed and discrete; 

(c) the family {X,*: II E w) U {S \ UC,} is locally finite. 

The property (a) follows from the fact that 1 can be the only cluster point for any 

subset of S, in particular, for S \ Uo; but U” is a neighborhood of 1 missing S \ Uo. Thus, 

S \ Uo is closed in G as well as all its subsets. Hence S \ U, is discrete. 



To see (b), it suffices to show that the set { I} U (S n A,, ), a translate of X,,, is closed 

and discrete in G. This set is closed because 1 adjoined to any subset of S yields a closed 

set. It is discrete at points of S, and it is discrete at 1 because lJ,,+I is a neighborhood 

of 1 whose intersection with this set is 1. 

Let us verify (c). Since {I} U (S n A,,) C Cl,, for each II E d, we have 

X11+, C :r,,+i trn+, c 1~ Vn+, I-i,,+, c h . lf,, c \,;, (*I 

From the definition of the sets I;, it follows that I;,+, C I’,,+, C I:, for each 71 E d 

and the set I< = nllEU I;, is disjoint from G, for 1C C: P. Now apply (*) to conclude 

that all cluster points of the family {X,,: *U E d} lie in I\-, that is. outside of G. This 

means that this family is locally finite in G. Adjoining the single set {S \ If,,} cannot 

destroy local finiteness. 

We noted in the proof of ( 1) that (S’) 2 (S \ { 1) ). Thus S’ generates G algebraically 

if S does. 0 

For our principal result, Theorem 6.6. we use a couple of simple lemmas. 

Lemma 6.4. Let X be a subset of a topological group G and Li an open neighborhood 

of the ident& in G. Then there exist an ordinal 7 and a .subset 1’ = { ,r,,: 0 < y} 

of X such that .rij $ &I’,, CT whene\ler CL < 13 < 2 and S C 1’ U. Further; if V is 

a neighborhood of I in G with I’-’ = 1’ and 1,” i CT then the set Yy is uniform/~ 

V-discrete in G. 

Proof. Straightforward recursive construction. 0 

Lemma 6.5. rf {O,, : n < UJ} is a symmetric open basis at the identity of a topological 

group G and for each n < ul the set F,, C G satisjies F,, O,, = G. then F = U,,,, F,, 

is dense in G. 

Proof. If II,’ is a nonempty open subset of G, then there exists an ;I’ E G and 71 < ti such 

thatx.0, CltY.Thenr~ y.On.forsome;y/ F,,,whenceyEs.O;’ =.r.O,, c117. 

So we have y E It. f” F,, 5 II’ n F # 0. 0 

Theorem 6.6. Every metrizable topological group G has a suitable set. Further; if G is 

not compact, it has a closed suitable set. 

Proof. By Theorem 6.3. it suffices to prove that a metrizable topological group G has 

a suitable set. Let {V,,: n E UI} be a base at the identity in G satisfying I; = G. 

Vr;‘+, c V, and V,;’ = V, for each II E UJ. By Lemma 6.4, for every 71 E CJ we can 

define a subset F,, = {s,,,,,: (Y < y,,} of I& so that 

ti) K, C F, k;,+~; 

(ii) 2,,/3 $ h,, VII+ I whenever CY < :-I < T,{. 

Put s = UTLELJ F,. We claim that the set S is suitable for G. First. we prove that 

(S) V, = G for each 71 E w’. (1) 
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Indeed. it suffices to show that 

FI, F, F’,, I;,,., = C; for each II t &I’. (2) 

We prove (2) by induction on II. The equality Fo 1; = G’ follows from (i). If (2) is 

valid for some II t d, then (i) implies that 

I*;, . F, ‘. F,, F,,+, I;,+? > F;, F, F,, I;,,, = C:. 

This proves (2). and hence ( I ). Since the sets I;, form a base at the identity of G. the 

detinition of ,Y. ( I) and Lemma 6.5 imply together that (S) is dense in G. It remains to 

show that S’ is closed and discrete in G\ { I}. Let .I’ t G be arbitrary, IC # 1. There exists 

II E d such that .r $ I;,. Since Fk C \ L. for each k E d:, we have Fk n (G \ x) = @ 
whenever A, > II. Therefore. G \ I{, can intersect only the sets Fo. FI.. . . . F,,. From 

(ii) and \;:+, I \;+I it follows that the set F,, is uniformly L;,+?-discrete in G, and 

hence is closed discrete in C: II E &)‘. Therefore, the union F = F, U F, U U F,) 

is a closed discrete subset of G and there exists an open neighborhood II7 of .I‘ in 

G whose intersection with F contains at most one point. Clearly. the neighborhood 

0 = 11. n (G \, K) of .I’ has the property 10 il S < 1. This proves that S is closed and 

discrete in G \ { I}. 
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