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0. Introduction

It is well known (see, for example, Hewitt and Ross [11, 25.14]) that a compact
connected Hausdorff abelian group G has weight w(G) less than or equal to ¢ if and
only if it is monothetic; that is, if and only if it can be topologically generated by one
element. (We say that a subset S of a topological group G topologically generates G if G
is the smallest closed subgroup containing .S.) Hoffmann and Morris [12] extended this
by showing that a compact connected Hausdorff group can be topologically generated
by two elements if and only if w(G) < c. It is clear that certain topological groups,
for example, nonseparable groups, cannot be topologically generated by a finite set. So
Hoffmann and Morris [12] introduced the concept of topological generating sets which
are in some sense “thin”. A subset S of a topological group G is said to be a suitable
set if it topologically generates G, is discrete and S U {1} is closed in G. A significant
result of [12] was that every locally compact Hausdorff group has a suitable set. (For
early overtures in the direction of what are now called suitable sets, see Iwasawa [17]
and Koch [18, Section 4]. That every compact totally disconnected group has a suitable
set was apparently first known by Tate and reported by Douady [6]. For a different and
more detailed proof of this result based in part on a structure theorem of Varopoulos
[23], see Hoffmann and Morris [16, Chapter 12].)

If GG is a topological group with a suitable set, then Hoffmann and Morris defined the
function s on G by s(G) = min{|S|: S is a suitable set for G}. They showed that if G is
a connected locally compact Hausdorff group with w(G) > ¢, then (s(G))* = (w(G))¥.
Further results on suitable sets of locally compact groups were obtained in {2,13-15].

In this paper we examine suitable sets in nonlocally compact groups.

1. Preliminaries

We begin with some notation and terminology. If Y is a subset of a topological space
X, then we denote the closure of ¥ in X by Y, or ¥ if confusion is impossible. If X
is a topological group, then the subgroup generated algebraically by the set Y is denoted
by (V).

Definition 1.1. Let G be a topological group and S a subset of G. Then S is said to be

a suitable set for G if (S) = G, S has the discrete topology and S U {1} is closed in G,
where 1 denotes the identity element of the group.

For locally compact groups we have the following significant theorem:

Theorem 1.2 {12, Theorem 1.12]. Every locally compact Hausdorff group has a suitable
subset.

Recall that the weight of a topological space X is denoted by w(X) and is defined by
w(X) = min{|{B|: B is a basis for the topology of X}.
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Somewhat surprising is the next result which says that many compact groups have
finite suitable sets, indeed 2-element suitable sets.

Theorem 1.3 [12, Theorem 4.13]. Every infinite compact connected Hausdorff group of
weight < ¢ has a 2-element suitable set.

The next result shows that we can and should restrict our attention to Hausdorff
topological groups.

Proposition 1.4. Let G be any non-Hausdorff topological group with at least three ele-
ments. Then G does not have a suitable set.

Proof. As G is not Hausdorff, for each point g € G the set _{3}—» contains a point h # g.
Suppose that S is a suitable set for G and let s be any point in S. As § is discrete,
Sn{s} = {s}. Since SU {1} is closed in G, {s} = {s,1}, where s # 1 as G is not
Hausdorff. Thus {1} = {s,1}. This implies that S has at most two points, s and 1.
Further, as {1} is a group, we have that s = 1. Finally, noting that (S} = G, we see that
G has at most two elements, which is a contradiction. Hence G has no suitable set. O

2. Countable topological groups

Recall that a topological space is said to be 0-dimensional if it has a basis of clopen
subsets.

Lemma 2.1. Let G be a nondiscrete Hausdorff topological group and U a nonempty
open subset which generates G. Then every point x € U has an open neighborhood
Ve C U such that (U \ V) = G. Further, if G is 0-dimensional, then V. can be chosen
to be clopen in G.

Proof. Let = be any point in U, where (U) = G. Since G is not discrete, U \ {z} is
dense in U, and hence (U \ {z}) is dense in (U) = G. But U \ {z} is open in G, so
(U \ {z}) is open and closed in G. So (U \ {z}) = G.

As z € (U \ {z}), there exist y1,¥2,...,yn € U\ {z} and €1, ¢3,...,6, = %1, such
that z = y7'y52 - -y5. Let O be an open neighborhood of z such that i; ¢ O C U,
for i = 1,...,n. Then for each ¢ € {1,...,n} there exists an open neighborhood O;
of y; such that O; C U, ONO; = 0, and O7'052--- 05 C O. Noting that W =
O7'03” - - - O%r is an open neighborhood of z, we can find an open neighborhood V,, of
zsuchthat V; CW C O.Sowehave U\V, 2U\O D O, fori =1,...,n. This
implies that (U \ V) 2 Of' --- O%» 2 V;. Therefore (U \ V) = (U) = G, as required.
The last statement of the lemma is obvious. O

Theorem 2.2. Every countable Hausdorff topological group G has a closed discrete
subset S such that (S} = G. In particular, S is a suitable set for G.
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Proof. If G is discrete or finitely generated, then the claim is trivial. So we can assume
G is neither discrete nor finitely generated. Let G = {g,: n < w}. It suffices to find a
subset S of G such that {(S) = G and, for each n < w, an open neighborhood U,, of g,,
such that U, N S is finite.

For this it will suffice to find for each n < w a clopen set V;, in G and a finite set
S, C G such that

D) gneVUVNU---UVy;

(i) G={(G\(\LuWu---UW,));

i) forn >0, V, CG\ (VoUW U---UV,_1);

iv) V;nN'S, =6, for « < n; and

(V) gn € {(SoUSIU---USy).
That the above suffices is clear by putting U, = Vo UV U---UV, and § =, ., Sn-

We shall define the sets S, and V,, inductively.

Put 5y = {go}. As G is a countable topological group it is 0-dimensional (see [8,
6.2.8 and 6.2.6]), so applying Lemma 2.1 with GG as the open set containing gy, we find
a clopen neighborhood V; of go such that G = (G \ V). And these have the required
properties.

Now assume that finite sets Sy, S1,. ... Sk and clopen sets Vp, Vi, ..., Vi are defined
and have the above properties (i)~(v). If gg1 € (So U S; U -+ U Sk), put Sgyq = 0. If
k1 & (SoUS U- - -USk), then by (ii) there exist y1, 42, . .., ym € G\ (VpUV U---UV})
and €1,€z,...,6m = £1 such that gr1 = y7'y52 - y5r. Put Sy = {y1, 12, ., Um}-
So in both cases (iv) and (v) are true.

Now if gg41 € VU VI U - U Vg, put Vg = 0. If giq1 ¢ VouUWViuU---uUV,,
then Lemma 2.1 shows that there exists a clopen neighborhood Vi1 of gi4+1 such that
Vir1 SG\ (VHLUWVIU---UVg)and G = (G\ (VU Vi U---UViy)). It is easily seen
that conditions (i)—(iii) are also satisfied in both cases.

So by mathematical induction the sets S, and V,, can be defined for all n with the
required properties, which completes the proof. U

Remark 2.3. Note that the above theorem says more than every countable Hausdorff
group has a suitable set. Firstly the suitable set is closed. Secondly, the suitable set
generates the group algebraically—it is not necessary to take the closure of the group it
generates.

Open Question 1. Can there be found (without the assumption of axioms beyond ZFC)
an example of a separable Hausdorff topological group which does not have a suitable
set?

In Section 3 we produce such an example (indeed one which is countably compact)
under the additional assumption of the Continuum Hypothesis (CH) or Martin’s Axiom
(MA). By contrast, in Section 5, we show that every separable metrizable group has a
suitable set.

A question more general than Open Question 1 is the following one.
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Open Question 2. Can there be found (again without the assumption of axioms beyond
ZFC) an example of a Hawsdorff topological group G which has a dense subgroup H
with a suitable subset, but G itself does not have a suitable set?

Remark 2.4 [Added April, 1997]. We are indebted to Artur Tomita for the observation
that Open Question 2 can be answered without difficulty on the basis of the results of
Section 3 below. Indeed, let X be an uncountable discrete set, let G = F(3X) be the free
abelian topological group on 3X (cf. Definition 3.2 below for the relevant definition),
and let H = (X) be the subgroup of G algebraically generated by X. Then H is
dense in G, the discrete set X generates H algebraically and hence topologically, and
X = HnN p(X) is closed in H. Hence X is a suitable set for H, while according to
Corollary 3.10 the group G itself has no suitable set. Independently after this manuscript
had been completed, one of the present authors (Tkacenko) had constructed a similar
example.
We are grateful to Professor Tomita for permission to cite this argument here.

3. Groups without suitable sets

Remark 3.1. If X is any Tychonoff space, then 5X denotes the Stone~Cech compact-
ification of X. In the terminology of Gillman and Jerison [9], a topological space X is
said to be an F-space if every finitely generated ideal in the ring C{X) is principal.
Every countable (discrete) subspace of an F-space is C*-embedded and in a compact
F-space every infinite closed set K contains a homeomorph of the space 3N (and hence
satisfies |K'| > 2° [24, 1.64]). Among the spaces known to be F-spaces [9, pp. 210 and
215] are: every discrete space; every space Y with X C Y C 3X and X an F'-space;
every space X \ X with X a locally compact F-space; every space 3X \ X with X
locally compact and o-compact. In particular we note that if D is any infinite discrete
space the spaces 8D and 3D\ D are compact F-spaces. Further, writing R = R, UR_

as usual and taking X = RUR_"" = AR\ [R5 \ R], the space 5X \ X (which is
Edk \ R4, that is, one of the connected components of SR \ R) is a compact connected

F-space.

Definition 3.2. Let X be a Tychonoff space. Then the topological group F(X) is said
to be the (Markov) free abelian topological group on X [20,21] if X is a subspace of
F(X) and for every abelian topological group G and every continuous map of X to G
extends uniquely to a continuous homomorphism of F(X) into G.

It is known that for every Tychonoff space, F'(X) exists and is unique.
We now present some preliminary results needed to show that certain free abelian
topological groups have no suitable sets.

Lemma 3.3. Let Iy, I\, . .. be a sequence of closed subsets of BN\N such that SN\N #£
Unen Fn. There exists an infinite subset P of N such that P (Unen Fr) = 0.
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Proof. It is well known that each nonempty Gs-set in SN \ N has nonempty interior
[9, 6S.8]. Therefore, (BN \ N) \ | ),y Fn contains a nonempty set V' which is open in

BN\ N. By 65.4 of [9] the sets of the form ™ \ N, where A is an infinite subset of N,
form a basis for the topology on OGN \ N. Therefore there exists an infinite subset P of

N with P \ N C V. Clearly this P has the required property. O

Notation 3.4. Let X be aset and n € N, n > 1. We say that a point z € X" is in
general position if all of the coordinates of z are different.

Lemma 3.5. Let X be a compact I'-space. Then for each integer n 2 1 the subspace
Sn of X™ consisting of points in general position is countably compact.

Proof. For X finite we have S,, = {} (hence, countably compact) when n > |X|, and
Sy is closed in X™ (hence is countably compact) when n < | X|; we assume henceforth
that X is infinite. It is clear that S; = X is compact. Let A be an infinite subset of
S, C X™, n > 2. It suffices to show that A has a cluster point in S,,. Denote by p; the
projection of X™ onto the sth factor, 1 < 4 < n. If p;(A) is finite for some i < n, there
exist a point £ € X and an infinite subset B of A such that B C p;'(z). Otherwise
we can choose a countably infinite subset C' of A satisfying p;(a) # p;(b) for distinct
a,b € C. Thus, we can find a countably infinite subset D C A such that the following
condition is fulfilled for each 7 < n:

either |p;(D)| =1 or p;(a) # pi(b) for distinct a,b € D. (*)

Without loss of generality one can assume that |p;(D)| = Ro for each ¢ with 1 < i< k
and |p;(D)| = 1 for each ¢ > k, where ¥ < n. Let a point ay € D be arbitrary.
Suppose that the points ag,...,a, € D have been defined for some r < w. Put X, =
p1(E;)U---Upn(E,), where E, = {aq,...,ar}. Since |X,| < nr < w, the condition
(*) and the definition of &k imply that for each ¢ < k& there exist only finitely many points
y € D with p;(y) € X,. Thus, we can find a,4, € D with p;(a,41) ¢ X, for each
i < k.

From the definition of the set E = {a,: r < w} it follows that p;(E) is infinite for
each ¢ < k and p;(E) Np;(E) =0 forall 7,5 < k, @ # j. Let Eq be an infinite subset
E such that p;(Ey) is discrete for each ¢ < k. Our aim is to define an infinite subset £*

of E, so that p;(E*) Np;(E*) = 0 for all distinct i, j < k.

For every z € Ey, put F; = {p2(z),...,pn(z)} N pi1(E£p). Obviously, F is a finite
subset of p;(Ep)\p1(Ep), and hence is closed. Since p;(Ep) is countably infinite and
discrete in the F-space X, the set p(Ep)\p1(Eo) is homeomorphic to SN\N. Apply

Lemma 3.5 to choose an infinite subset F; of Ey so that

( U FI)OEI(TI)=(1).

zEE;

This gives us p;(Ey) Npi(E) =0 for each j # 1.
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Apply the same procedure for i = 2,...,k and define a decreasing sequence Fy D
E, D E; D --- D Ej of infinite subsets of Ey satisfying

pj(E ) npz( 1,) ¢ for each j # 7.

Clearly, the set E* = E} satisfies p;(E*) N pi(E*) = 0 for all distinct i, j < k. The
latter means that Y = | J; ¢, pi(E*) is a countable discrete subspace of the F-space X,
whence p;(E*) Np;(E*) = ) whenever ,j < k, i # j.

If y is a cluster point of E* in X™, then p;(y) € p:(E*) for each i < k so that
pi(y) # p;(y) for distinct ¢,j < k. This gives us a cluster point y € S, for E* if
k = n. The case k < n requires more work. Let p;(D) = {z;}, k+ 1 < i < n. Choose
disjoint infinite subsets E', E” of E*. Then pi(E’) and p;(E") are disjoint subsets of
the discrete set Y, whence p;(E’) N p,(E”) = 0. Therefore, either x| ¢ m(E') or
Tkt € p1(E"). We put Q! = E' in the first case and Q! = E” otherwise. Continuing
this way we define infinite sets Q] D Q) D --- D Q! _, satisfying zx1; ¢ p1(Q)) for
i=1,...,n—k. Pu Q' = Q! _,. Clearly, {ZTx41,...,2.} N ;1(Q!) = 0.

Repeat this procedure considering the projection p; and define an infinite set Q2 C Q'
satisfying {Zx+1,...,%n} Np2(Q?) = 0. At the step k we shall have an infinite subset
Q* of Q*' with

{Zr+1,. sz} Np;(QF) =0 for each i < k. (%%)

Put E, = Q*. Then (*+) and the choice of the set E* imply that every cluster point of
E, belongs to Sy,. This completes the proof. O

Lemma 3.6. Let X be as in Lemma 3.5, and let X; = X, fori=1,...,n+1, neN.
Let B be an infinite subset of the product X! = Xy x --- x X, X Xp41, n 2 1, and
Pn(b) = Pny1(b) for each b € B, where p;: X™t! — X, is the projection mapping. If
Tn+1(B) has a cluster point a = (ay,az,...,ay,), then (a),8z,...,an,a,) is a cluster
point of B, where mpy1: X" — X, x Xy x -+ x X,, is the projection omitting the
(n + 1)st coordinate.

Proof. Substituting X; X --- x X,_; by a single factor, it suffices to consider the case
n = 2. Let (a1, ay) be a cluster point of m3(B) C X; x X3 and O = O; x O, x O3 be
an open neighborhood of the point a* = (a;, az,a2). Put O} = O, N Os. By assumption
there exists a point b € B with my(b) € Oy x O3, whence b € Oy x O} x Oy C O. This
proves that O N B # @ for any neighborhood O of a*. O

Lemma 3.7. Let X be a compact F-space, B an infinite subset of X™ (n > 1) and
8 € {+1,-1}". Let F(X) be the free abelian topological group on X and js the
multiplication map of X" into F(X) given by js(zi,...,xn) = x{' -+ - 25, where § =
(€1,.-,€n)- If js(b) has length n for each b € B, then there exists a cluster point a of
B such that js(a) also has length n.

Proof. We apply mathematical induction on n. If n = 1, the mapping js: X — F is
a homeomorphic embedding and the claim is obvious. Now assume that the lemma is
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proved for n = m, and let n = m + 1. Let S,, be a subset of X™ consisting of points in
general position. If the intersection B N S, is infinite, it suffices to use Lemma 3.5 and
the continuity of the mapping js.

Otherwise one can assume that B and S, are disjoint. Every point b € B has at
least two equal coordinates and since B is infinite, there exist indices &k, < n, k < [,
and an infinite subset C C B such that px(x) = p)(z) for each z € C, where py
and p; are respectively the projections of X™ onto the kth and Ith factors. Let § =
(€1,...,€n). Then €, = ¢, for the length of js(b) is n for each b € C (and C is
not empty). Denote by m; the projection of X™ onto X™ omitting the /th coordinate:
m{z1, ..., &j,...,&n) = (x1,...,%1,...,2y). By the inductive hypothesis there exists
a cluster point @ = (aj,...,Qk,...,41,...,a,) of m(C) in X™ such that the length
of js(a) is equal to m, where 8 = (e4,...,€k,...,€l,...,&n). By Lemma 3.6, a* =
(a1,-+.,QK,---,01,-..,a,) With a; = ay is a cluster point of C and one easily sees that
the length of js(a*) is n, forg, = ¢;. O

Theorem 3.8. If X is a nonseparable compact F'-space, then the free abelian topological
group on X, F(X), does not have a suitable set.

Proof. Case 1. |S| < w. Each s € § is a word using finitely many symbols of X. All told,
the (minimal) set C' of symbols from X needed to give S is then countable. Since X is not
separable there is continuous f: X — T such that f|C = 1, and some p € X satisfies
f(p) # 1. The continuous homomorphism h from F(X) extending f then satisfies
h = 1 on F{X) (since C generates that group topologically) but h(p) = f(p) # 1,
contradiction. ,

Case 2. |S| > w. Algebraically F'(X) is the free abelian group on X. For each integer
k > 1 and each sequence § = (e1,...,6x) € {—1,+1}*, denote by js the mapping
of X* to F(X) defined by js(zi,...,25) = ¢ ---z%. Considered as a mapping to
F(X), the mapping js is continuous in each case. Clearly, we have

F(X)=|J{is(X*): keN, 6 e {-1,+1}*}.

Therefore, there exist £k € N and § € {—1, +1}* such that the intersection S N js(X*)
is infinite. Let n be the minimal integer with this property, and choose § € {—1,+1}"
corresponding to this 7. By the choice, there exists a countably infinite subset A C
SN js(X™) all elements of which have length exactly n. Put B = j; '(A). Note that the
mapping js: B — F(X) is finite-to-one (in fact, |j; ' (g)| < n! for each g € A). Since A
is discrete, we conclude that B is countably infinite and discrete. By Lemma 3.7, there
exists a cluster point y of B in X™ such that the length of js(y) is equal to n. Thus,
g = Js(y) is a cluster point of A and g # ex(X). This contradicts the fact that S (and a
subset A of S) has no cluster points in F(X)\{er(x)}. The same argument shows that
S cannot be suitable for F(X). O

Remark 3.9. In Theorem 3.8 we do not use all the power of the assumption on X that
it is an F-space; rather we used only that every countable discrete subspace of X is
C*-embedded in X.
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Corollary 3.10. If X is any uncountable discrete space. then F(,3X) has no suitable
sel.

Later we shall show that it X is a countable discrete space, then F'(:7.X'} does have a
suitable set.

Corollary 3.11. If X is any infinite discrete space, then F{3X \ X) huas no suitable set.

Corollary 3.12. If X is a connected component in 3R\ R, then F(X) has no suitable

sel.

Recall that u variety of topological groups [22] 1s defined to be a class of topological
groups closed under the formation of subgroups. quotient groups. and arbitrary Cartesian
products,

Remark 3.13. We now observe that a dense subgroup of a topological group with a
suitable set may itself fail to have a suitable set.

Corollaries 3.10. 3.11 and 3.12 remain true if we replace free abelian topological group
by free topological group in the variety, B(T). of topological groups generated by the
circle group, T. In particular if X is as in Corollary 3.12, then F(X.%(T)) has no
suitable set: but it is a o-compact connected dense subgroup of its closure in T, and
that closure. like every compact connected abelian group of weight not exceeding ¢, is
monothetic {cf. [11, 25.14]) and hence has a one-element suitable set.

Remark 3.14. In the above corollaries we produced examples of topological groups
without suitable sets which had cardinality at least 2°. However. it is possible to modify
Corollary 3.11 to produce in ZFC a Hausdorff topological group of cardinality ¢ with no
suitable set.

We will define a nonseparable subspace ¥ of SN \ N with [¥| = ¢ such that the set
177 1S, is countably compact for each integer n > 1. where S, is the subset of (SN N)»
consisting of points in general position. Then the free abelian topological group F(Y")
also is not separable and the argument in Case 2 of the proof of Theorem 3.8 shows that
F(Y'} has no suitable set.

Now let us define Y. For every integer n > 1 and every countably infinite subset .4
of 5, take a point (A.n) € AN S,. by Lemma 3.5. Let 4 be an uncountable family
of nonempty disjoint open subsets of SN\ N (see Example 3.6.18 of [8]). By transfinite
recursion one defines an increasing chain Y,. Y. .. .. Yo..... o < w. of subsets of
M M satisfying the following conditions for each v < wy:

(1) Yy intersects every member of the family 4

(Yl 2™
(2) it » > | and A is a countably infinite subset of ¥ M S,,. then every coordinate
of the point .r{.n) belongs to Y5, ;1.

l.et ¥ be the union of the sets Y,,. o < wy. Since Yy C Y, from (0) it follows that ¥

is not separable. It remains to show that Y N5, is countably compact for each n € N*.
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Let A be a countably infinite subset of Y"* N S, for some n > 1. Since the sequence
Y0.Y1...., Y., ... is increasing, there exists a: < wy such that p;(A)U---Up,(A4) C Yy,
where p; is the projection of (SN\N)™ onto the ith factor, 1 < i < n. Then A C Y*NS,,
whence z(A,n) € ANY,,; NS, CY™NS,. This proves our claim. O

Now before giving a partial response to Open Question 1 of Section 2, we recall
Martin’s Axiom (MA) which is independent of the usual axioms of set theory (ZFC).
We state it in a topological form (see [24]).

Martin’s Axiom. If X is a compact space in which every collection of disjoint open
sets is countable, then X is not the union of fewer than ¢ nowhere dense subsets.

Theorem 3.15. In the axiom system ZFC + MA there is a separable group with no
suitable subset.

Proof. It is proved by van Douwen [7, 8.1] in that axiom system that the Boolean
group {—1,+1}° contains a (dense) separable countably compact subgroup G with no
convergent sequences. As remarked by van Douwen himself (loc. cit., 6.1), in such a
group G every infinite subset A satisfies |A¢| > ¢. It is therefore clear that G has no
infinite suitable set. That G has no finite suitable set is also clear: G itself is infinite. but
every finite subset of G generates a finite (hence closed) subgroup. O

Open Question 3. Does there exist in ZFC a pseudocompact Hausdorff topological
group with no suitable set?

Remark 3.16 [Added April, 1997]. In joint work in progress, one of the present co-
authors (Tkacenko) and Dikran Dikranjan and Vladimir Tkacuk have answered Ques-
tion 3 affirmatively. Indeed, the example (in ZFC) may be chosen w-bounded in the sense
that each of its countable subsets has compact closure. A manuscript is in preparation.

4. Groups with suitable sets

Let G = [],c; G. be a Cartesian product of topological groups G;. For every element
z € G, denote supp (z) = {i € I: x; # 1;} where 1; is the identity of G,. It is easy to
verify that the sets
@ G, = {z € G: |supp(z)] <No} and Z Gi={z €G: |supp(x)] < No}
i€l icl
are dense subgroups of (G; these are called, respectively the o-product and X-product of
the groups G;.

Theorem 4.1. Let H = @,.; Gi, A=) ,c; Giand G = [],.; G, for any index set
1. If each G; has a suitable set then H, A and G each have a suitable set.
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Proof. Let S; be a suitable set for G,, for i € I. We assume without loss of generality
that 1, ¢ S,. Define S = J,.; (S: x {1ni}})-

S'is discrete. Given p = (ir,.1p (;3) € S there is a neighborhood U; of z, in G, such
that 1, ¢ U, and U, N S, = {r, }. Let 7; be the projection mapping of G onto G,. Then
7 U)NS = {p).

S1J{1} is closed in G. Suppose that x is an accumulation point of .S U {1}, with
r ¢ SuU{1}. If some two distinct elements i and j of I satisfy m,(x) = z; # 1, and
m;(.e) = .rj # 1; then we readily find a neighborhood U of r (of the form W:l(Ul) N
Tr;' (U,)) such that U N (S U {1}) = B, a contradiction. Thus x; # 1, for exactly one
i € I. Then &, € S; is impossible since S, is discrete, and r; ¢ S; is impossible since
S; U {l,} is closed in Gj.

Being a subset of H which is closed in G. SU {1} is closed in H. It is clear that S
generates a dense subgroup of H. The proof that S is suitable in H is complete.

Since H is dense in A and in G we have: S generates A topologically and S generates
G topologically. O

Theorem 4.2. Ler H be an open subgroup of a topological group G. If H has a suitable
set, then G has a suitable set. If H has a closed suitable set, then G has a closed suitable
set.

Proof. Let S be a suitable set for H and let A select one point from each coset of H in
G that is, © € G implies |A N xH| = 1. We claim that S U A is suitable for G. Surely
S'U A is discrete, and | is its only (possible) accumulation point. Further, S generates a
dense subgroup of H; so S U A generates a dense subgroup of G. If S is closed in H,
then S U A is clearly closed in G. O

The next theorem is a special case of one which we shall prove later. However, its
proof yields information we use in the next result.

Theorem 4.3. Let G = (G. p) be a metric group with a suitable set X, and let H bhe a
dense subgroup of G. Then H has a suitable set. Further, if X is a closed suitable set
for G, then H has a closed suitable set.

Proof. Let X = {u;: ¢ € I} be suitable in G. Since X is discrete and G is metric. X
is strongly discrete in the sense that its elements admit pairwise disjoint neighborhoods
B., (r;), where B.(x) denotes the open ball with respect to the metric p with center z
and radius ¢, For ¢ € I we shall define asetY; C H and then Y = UIEI Y. and then
show that Y is suitable for H.

It r, € H wetake Y; = {r;}. If x, ¢ H we choose a faithfully indexed sequence v, ,,
in H with z, as limit: indeed we choose y, , € B., 3(x;); then, we take ¥, = {y,,,: n <
wh. PutY ={J,.; Y.

Y is discrete. If y = @; € Y then B; (r,)NY = {y}. Ify = ysn, €Y, C Y then
since the sequence {y, 4 & < w} is discrete there is a neighborhood U of y meeting no
point y; 1 (same i) when k # n. Then (U N B ;3(y)) NY = {y}.
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Y generates H topologically. The closed subgroup of G generated by Y contains X,
hence is G itself. Thus the closed subgroup of H generated by Y is H.

Y U {1} is closed in H. Let p € H be a limit point of Y. We will show that p = 1.
Let {zx: k < w} be a sequence in Y converging to p.

Case 1. z has a subsequence of points of the form z;, say zx = z;, € X. Then
zy, »peGsop=1.

Case 2. Case 1 fails. Passing to a subsequence if necessary, we assume each z; has the
form 2y = yi, .n,. Note that no fixed ¢ € I arises infinitely often. For if 2 = y; . for
fixed ¢ and for infinitely many & < w then z; — x; ¢ H. a contradiction since p € H.
We assume therefore, passing to a subsequence if necessary, that z; = y;, n, With the
indices i pairwise distinct.

We claim in this case that ¢;, — 0. If not, passing again to a subsequence, we have
(for some ¢ > 0) that €;, > ¢ for all k. Now let [ and m be distinct values of k; without
loss of generality we assume &; < . Since x; € Be, (). p(21, Zm) 2 €m. Also
(T, 2m) € em/3 and play, 2)) < €;/3 < £5,/3. Hence p(z;,2mm) 2 /3 2 €/3. This
is a contradiction as the sequence zj converges to p. So the claim is proved.

Now from 2 — p and 2z € B, (z;,) and ¢;, — O follows z;, — p € G with
z;, € X. Thus p = 1, as desired.

Finally, it is clear that if X is closed in G. then Y is closed in H. O

The following is a corollary of the proof of Theorem 4.3. For the statement re-
call that if the topological group G has a suitable set, then we define s(G) to be
min{|S|: S is a suitable set for G}.

Corollary 4.4. Let G be a metrizable topological group with a suitable set and let H a
dense subgroup. Then s(H) < max{s(G),w}.

Remark 4.5. Firstly we note that (Q is a dense subgroup of R and s(Q) = w while
$(R) = 2. So, in the notation of Corollary 4.4, we can have s(H) > s(G).

Remark 4.6. At first sight one might think that if H is a dense subgroup of a Hausdorff
topological group G and both have suitable sets then s(H) would be no larger than s(G).
This is certainly false. For example, if G;, ¢ € I, is such that each (; is topologically
isomorphic to T and [I| = ¢, then H = ), ; G; is dense in G = [[;c; Gi, while
s(H) = ¢, and s(G) = s(T°) = 1. Note that this demonstrates that if the condition of
metrizability were deleted from the statement of Corollary 4.4 then it would be false.
Indeed we know of no example where s(H) < s(G), for H dense in G. [Note added
April, 1997. Recently Dmitri Shakhmatov has provided such examples.]

Theorem 4.7. Let G be any Hausdorff topological group. Then there exists a Hausdorff
topological group F such thar G is topologically isomorphic to an open subgroup of F
and F has a closed suitable set; indeed F is generated algebraically by a closed discrete
subset.
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Proof. Given G, let H be the underlying group of G with the discrete topology. Define
F =G x H. Then G is an open subgroup of the topological group F.

Let G = {re: £ <w}and H = {we: £ < w}. For each & choose ye € G x {we}—
for example, ye = (r¢.we)—and define z¢ = ye - (e, 1)7 ", Since (r¢,1) = yge - :g',
the point (z¢. 1) (which we have identified with r¢) lies in any subgroup of I which
contains both y; and z¢. Thus the set A 1= {ye: £ < K} U {2z € < n} generates F
algebraically, hence topologically. Clearly A is closed and discrete in F', since (a) the
open sets G x {we} are disjoint and cover F and (b) the intersection of A with G x {w¢}

is the two-element set {ye. z¢}. O

Remark 4.8. Since there are Hausdorff topological groups with no suitable subset, the
result above provides a strong negative answer to the question: does every open subgroup
of a topological group with a suitable set itself have a suitable set?

Remark 4.9. The proof of Theorem 4.7 also shows that a Hausdorff quotient group of
a topological group with a suitable set need not have a suitable set.

5. Separable topological groups

Recall that a Tychonoff space X is called a k,-space [19] if it has compact subspaces
X,. n €N, such that X = UHGN Xn, and a subset A of X is closed in X if and only
if AN X, is compact for each n € N. Our approach to the proof of Theorem 5.1 uses
Stone-Cech compactifications in the manner introduced in [10].

Theorem 5.1. Let X be a separable Tychonoff space and let F(X) be the free abelian
topological group on X. Then F(X) has a closed suitable set.

Proof. If X is finite, then F(X) is discrete, and clearly F(X) has a closed suitable set.
So without loss of generality, assume that X is infinite,

Let F(3X) be the free abelian topological group on the Stone—Cech compactification,
13X, of X. The natural map ¢ of X into 3X extends to a continuous one-to-one homo-
morphism @ of F(X) into F(3X). Then F(3X) is a k,-space with k,-decomposition
F(3X) = U, cn Fa(8X), where F,,(3X) is the set of all words in F(3X) of length
with respect to 3X of length < n.

Let Y = {y;.42,....yn....} be a dense subset of X. Put

S={y.yiya o gy yna b
Clearly each of the sets

B(S)NFu(BX) = {P(1)- P(y192). - ., P(yiy2---yn)}

is finite, so @(S) is closed in F(3X). Indeed for each subset T of S, $(T) N F,,(3X)
is finite. Thus &(T') is closed. Hence ®(S) is discrete. Therefore S is a closed discrete
subspace of F(X).
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As (S) contains Y, (S) contains X and hence equals F(X). Thus S is a closed
suitable set for F(X). O

Remark 5.2, Theorem 5.1 remains true if free abelian topological group is replaced by
free topological group.

Definition 5.3. A topological group G is said to be totally bounded if for every nonempty
open subset U of GG there is finite F' C & such that G = FU. For « an infinite cardinal,
the topological group G is said to be «-totally bounded if for every nonempty open subset
U of G there is ' C G such that [F| < &, G = FU. (So, totally bounded is w-totally
bounded.)

Every group G is |G| " -totally bounded, where |G|t denotes the first cardinal greater
than [G/.

Notation 3.4, Given a topological group G, let b(G) (the boundedness number of G) be
the least cardinal « such that G is x-totally bounded.

Remark 5.4. The condition « < b((G) means that for some nonempty open subset U of
G no F C G with |F| < & satisfies G = FU. It is then easy using induction to find a set
{ze: € < K} C G such that each x¢ satisfies z¢ ¢ |J, . wyU. It then follows for some
nonempty open neighborhood V' of 1 that some s-many translates of ' form a pairwise
disjoint family which is uniformly V-discrete in the sense that for each p € G the
neighborhood pV' of p meets only finitely many members of that family (in fact, at most
one). Indeed given U/ as above, with UU a neighborhood of 1. let V' be a neighborhood
of 1 such that V. = V! and V* C U. Then {x¢V: ¢ < k} is a disjoint, uniformly
V-discrete family: given p € G, the neighborhood pV of p meets at most one of the sets
x¢V . since if v; € V (with 1 < i@ < 4) satisfy pvy = xrewn and pry = @yvg with np < &
then z¢ = zyva(vs) o1 (v2) ™! € 2,V* C 2, U, a contradiction.

Notation 3.4, We write d(G) for the density character of G, that is the least cardinal of
a dense subset of G.

Theorem 5.5. Every topological group G satisfies b(G) < (d(G))™T.

Proof. Suppose instead that b(G) > (d(G))™", so there is & such that d(G) < £ < b(G).
Since x < b((G) there is (according to Remark 5.4) an open neighborhood V' of 1 and
a subset X of G with | X| = & such that the sets £V with = € X are pairwise disjoint.
This is incompatible with the condition d(G) < . O

Remark 5.6.

(a) The “gap” between b((G) and d(G) may be arbitrarily large. For examples to this
effect let @ > w and define k = (2*)™. Then with G = {—1,+1}* or G = T*
we have b(G) = w since G is compact, but d(G) = log(w(G)) = logk > a (cf.
[8, 2.3.25] or [3, 3.9(V)]).
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(b) For metrizable groups G the inequality 5(G) < (d(G))* can be sharpened to
read d(G) < b(G) < (d(G))*T. with b(G) = (d(G))™T in the case cf(d(G)) > w.
To see this let p be a left-translation-invariant compatible metric for G and for
0 < n < w let D, be a maximal 1/n-dispersed subset of G (in the sense that
D,, is maximal with respect to the property .y € D,,. r # y = p(r.y) = l/n)
and set |D, | = x,. Each set of the form pB,;,,(1) (p € G) contains at most
one element of Dy, so no F' C G with |F| < w,, satisfies G = F'By;3,(1). Thus
b(G) > wf for each n < w. so b(G) = |D| = d(G). If cf(d(G)) > w then
some #,, satisfies x,, = d(G) and we have d(G)* = x} < b(G) < (d(G))", as
asserted.

(c) The relation d(G) = b(G) can occur for metrizable groups (with cf(d(G)) = w).
Given a strictly increasing sequence ~, of infinite cardinal numbers, set K =
sup{x,: n < w}, choose (discrete) groups G, with |G,,| = k,, and let G be the
product group [],, ., G, with the usual product topology. Every basic neighbor-
hood U7 of 14 has the form

U= () ="} ={1u}x [ G
n<N n>N
for some N < w (and with H =[],y Gu):since |H| =[],y kn = KN < K,
fewer than x-many translates of U suffice to cover G. It follows that (G) < x =
w{G) = d(G), as asserted.
In view of Theorem 3.5, the hypothesis “d(G) < b(G)” in the next theorem is
equivalent to the condition b(G) = (d(G))™.

(d

—

Theorem 5.7. Let G be a Hausdorff topological group such that d(G) < b(G). Then G
has u closed suitable subset.

Proof. Let x = d(() and (using Remark 5.4) choose {ps: { < v} C G and an open
neighborhood V' of 1 such that each set of the form pV” (with p € () meets at most
one of the sets p:V. Since V is open we have d(V'} < & so there is a (not necessarily
faithfully indexed) dense subset {z¢: § < w} of V. For each £ < k. let y¢ = pexe. Then
define

S:{pgz £<H}U{y51 §<H}.
and let H be the (open) subgroup of G generated by V U {psV: £ < k}. Then S C H.
The subgroup of G generated by .S contains for each £ < ~ the point z¢ = (pg)~'ye, so
the closure of that group contains V' and hence H. Each point p in G has a neighborhood
(namely pV') which meets at most one of the sets p¢V; this neighborhood contains at
most two elements of S. Thus S is closed and discrete in G. The upshot is that S is a

closed suitable subset of H. with H an open subgroup of GG. Then G itself has a closed
suitable subset, by Theorem 4.2. O

Corollary 5.8. Every separable Hausdorff topological group which is not totally
bounded admits a closed suitable subset.
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Proof. Such a group GG has d(G) = w and b(G) > w so Theorem 5.7 applies. O

Corollary 5.9. Let G be a Hausdorff topological group with a nonempty open subset U
such that d(U) < b(G). Then G has a closed suitable set. Thus every locally separable
Hausdorff topological group which is not totally bounded has a closed suitable subset.

Proof. We take | € U. With « = d(U') < b(G), again from Remark 5.4 there is an
open neighborhood V of 1 (with V' C U) and {pe: £ < x} C G such that the family
{peV: € < k} is uniformly V'-discrete. Now with {x;: £ < «x} chosen dense in V, the
proof proceeds and concludes verbatim as in Theorem 5.7. O

The next corollary will be subsumed in a more general result later, but the proof is
quite different.

Corollary 5.10. Every locally separable metrizable topological group has a suitable
subset.

Proof. If such a topological group G is not totally bounded then Corollary 5.9 applies.

If G is totally bounded then its Weil completion [25] G is compact (hence, complete)
and metrizable. By Theorem 1.2, G admits a suitable subset. Theorem 4.3 implies that
a dense subgroup (in this case, (G) of a metrizable group with a suitable subset (in this
case, G) itself has a suitable subset. [

It should be noted that neither Corollary 5.10 nor Theorem 1.12 can be strengthened to
demanding the existence of a closed suitable set. Theorem 5.11 shows that, for example,
the compact group {—1. 1}", where  is any cardinal number > w. has no closed suitable
set. In particular, this is the case when = w and the group is compact metrizable.

Theorem 5.11. Let G be a countably compact Hausdorff group. If |G| > 2 or G is an
infinite abelian torsion group, then G does not have a closed suitable set.

Proof. Let S be a closed suitable subset of G. Then S is a closed discrete subspace of
the countably compact group G. Hence S is finite. Then [(S)] < 2. So if |G| > 2¢, this
is a contradiction and G has no suitable set.

On the other hand, if G is an abelian torsion group, then (S} is a finite group and so

is closed in G. Hence (S) is also finite and so does not equal G. In this case also G has
no closed suitable set. U

Definition 5.12. A topological space is said to be of countable pseudocharacter if every
singleton set is the intersection of a countable number of open sets.

Theorem 5.13. Let H be a separable totally bounded Hausdorff topological group of
countable pseudocharacter. If S is a countable dense subgroup of H, then there exists a
discrete subset L of S such that L is closed in H\ {1} and S = (L). So L is a suitable
set for both S and H.
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Proof. Denote by G the completion of H. Then G is a compact topological group which
contains H as a dense subgroup. Let S = {x,: n € w} be a enumeration of S. Choose
a decreasing sequence {U,,: n € w} of open neighborhoods of the identity e¢; in G
satisfying the following conditions:

(1) Upy, C U, for each n € w;

(2) {IH} =Hn (mn€u) Un)-

We shall construct by induction an increasing sequence {L;: & € w} of finite subsets
of S to satisfy the following conditions for each £ € w:

(1) @ € <Lk>;

(i) Lg+ \Lk c U

(iliy G = (Ly) - Uy.

Being dense in H, the group S is dense in G. We have, therefore, the equality G =
S - Uy. Since G is compact, there exists a finite subset K of .S such that Ky - Uy = G.
In particular, there are ay € Ky and ug € Uy with rg = ag - up. Then uy = ao’l -rg €S
and we put Lo = Ko U {uo}. It is clear that Ly C S.

Let n € w and suppose that we have defined an increasing sequence Lo, .. ., L, of
finite subsets of S satisfying (i)—(iii) for each & < n. Since S is dense in G, the set
(U, N S) is dense in the group G, = (U,). Obviously, G,, is open in G. and hence
is closed compact. Therefore, one can find a finite subset F,,;; of (U7, N S) so that
Fot1 - Uy = Gy, In particular, there exists a finite subset K, of I/, NS with
F.i1 C (Knqr). whence (Ryiy) - Upyr = Gy Put L) | = L, U K,4,. By (iii), we
have

(L) - Unr = (L) - (Bt} - Ungr = (L0) - G D (L) - Uy = G. (w0

By (xxx), there are a, 41 € (L)) and u,y| € Uy such that 2p | = Qpyr - Upysr.
Since a,+1 € (L}, ;) C S and x4, € S, we conclude that u,,, € S and put L, | =
L . U{uny1}. Clearly, Ly, is a finite subset of S and L, C Ly4. From (xxx) it
follows that (L, 1) - U4 = G. Thus, the conditions (i)—(iii) hold at the step n + 1.

Put L = Un&) L,,. From (ii) it follows that L\ Uy C Ly is a finite set for each k € w.
The latter. along with (1) and (2), implies that L is closed discrete subset of H \ {1x}.
It remains to apply (i) in order to conclude that S = (L). The result is proved. O

Theorem 5.14. A locally separable Hausdorff topological group of countable pseu-
docharacter has a suitable subset. In particular a locally separable metrizable topo-
logical group has a suitable set.

Proof. Let H be a locally separable topological group of countable pseudocharacter.
Then it has an open separable neighborhood U of the identity. Let G be the separable
open subgroup of H generated by U.

If G is not totally bounded, then ¢ has a suitable set by Corollary 5.8. Otherwise let
D be a countable dense subset of G and S = (D). Then S is a dense countable subgroup
of (¢ and an application of Theorem 5.13 shows G has a suitable set. Finally, as G has
a suitable set Theorem 4.2 implies that H has a suitable set too. O



42 W.W. Comfort et al. / Topology and its Applications 86 (1998} 25—46

Note that we now have two proofs that every (locally) separable metrizable group has
a suitable set, see Theorem 5.14 and Corollary 5.10. In the next section we will prove a
more general result.

6. Metrizable topological groups

Recall that a family {F;: ¢ € I} of subsets of a topological space X is said to be
locally finite if for each x € X there is an open neighborhood U of z such that U
intersects only a finite number of the Fj.

The following lemma is easily verified.

Lemma 6.1. Let X be a topological space and F a locally finite family of subsets of
X, each discrete and closed in X. Then |} 5 F is discrete, and closed in X.

Proposition 6.2. Let G be a topological group of countable pseudocharacter which is
not totally bounded. If G has a suitable set S, then it has a closed suitable set S’. Further,
if G = (S) then the closed set S' can be chosen so that G = (S').

Proof. Let U be a neighborhood of 1 such that no finite F* C G satisfies G = FU.
Let zo ¢ U and recursively choose 2,41 € G\(U U U,(,, #+U). Choose a symmetric
neighborhood V' of 1 such that V* C U and note this:

For every p € G the set pV meets at most one of the sets r,,V. (*)

[Proof. If pvy = zpv2 and pvs = x,ve, all v, € V., say with n < m, then z,,, =
TpoU; 1'1)3114_ '€ z,U, contradiction.]

Now let {1} = N, .., Un with each U, open and with Uny1 € U,. We assume
without loss of generality, replacing U, by U, NV if necessary, that each U,, C V.
Define the (possibly empty) annulus 4, by A, = U\Up4:.

Now let S be suitable for G. If 1 € S then S is closed and there is nothing to prove,
so we assume 1 ¢ S.

For n < w define X,, = {z,} Uz, - (4, N S) = 2,({1} U (A, N S)), and define
S = (S\Us) UU, <, Xn-

We want to see that S’ is a closed suitable set.

(1) (S§") = G. It is enough to show that (S’) D S. Surely S’ 2 S\Up. If p € SN Ujp

then since p # 1 there is a largest n < w such that p € U,,. Then p € A, N S so
p €z (2, (AN S)) C{I").
(2) S’ is closed and discrete. According to Lemma 6.1, it is enough to see that
(a) the set S\Up is closed and discrete;
(b) each set X, is closed and discrete; and
(c) the family {X,: n < w} U {S\Uy} is locally finite.

(a) Surely S\Uj is discrete. An accumulation point of .S\ Uy must be an accumulation
point of S, i.e., must be 1; but U is a neighborhood of 1 missing S\Up. Thus S\Uj is
closed.
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(b) Conceptually it is easier to consider {1}U(A4,N.S), of which X, is a translate. This
set is closed because 1 adjoined to any subset of S yields a closed set. It is discrete at
points of S, and it is discrete at | because U, 4, is a neighborhood of 1 whose intersection
with this set is 1.

{c) It is clear from (=) that the family {z,}": n < w} is locally finite. Since X, C 1V’
(all n) the family {X,,: n < w} is therefore locally finite. Adjoining the single set { S\Up}
cannot destroy local finiteness.

We noted in the proof of (1) that {S") D S. Thus S’ generates G algebraically if S
does. O

Theorem 6.3. Let G be a noncompact topological group of countable pseudocharacter.
If G has a suitable set, then it has a closed suitable set. Further, if G = (S) then the
closed set S’ can be chosen so that G = (S").

Proof. Consider two cases.

Case 1. G is not totally bounded. Then the claim follows directly from Proposition 6.2.

Case 2. G is totally bounded. Denote by H the group completion of G. Then H is
compact and H # G because G is not compact. If G intersects every nonempty Gs-set
in H, then G is pseudocompact (see [3, 6.4]: [4]). However. a pseudocompact group of
countable pseudocharacter is metrizable, and hence compact {1, 3.1]: [5], which gives us
the contradiction H = G.

We have thus proved that there exists a nonempty Gs-set P in H disjoint from G.
Pick a point h € P. One easily defines a sequence {V,,: n € w} of open neighborhoods
of h in H so that V. 1y C V,, foreach n € w and ¢, V,, C P. Let {Up: n € w} be a
sequence of open neighborhoods of 1 in H with the following properties:

(MY h-U, CV, foreach n € w;

(2) U”Jr, C U, foreach n € w;
3 {1} = GNNe Un
For every n € w pick a point &, € GNh-U, and put 4, = U, \ U, and
Xy =ax, - ({1TU(SNAY)).
Let S be a suitable set for G. We claim that
(S\Uo)u | X
new
is a closed suitable subset in G.
) (S"¢ = G. It is enough to show that (§') D (S\ {1}). Surely S’ D S\ Up. If
p € SNUand p # 1, then there is the largest n < w such that p € U,. Then
pEA,NSsopex, (v, (A4,N8)) C (5.
(2) S’ is closed and discrete. According to Lemma 6.1, it is enough to see that
(a) the set S\ Uy is closed and discrete;
(b) each set X, is closed and discrete;
(c) the family {X,: n € w} U{S\ Uy} is locally finite.
The property (a) follows from the fact that 1 can be the only cluster point for any
subset of .S, in particular. for S\ U; but Uy is a neighborhood of 1 missing S\ Up. Thus,
S\ Up is closed in G as well as all its subsets. Hence S\ U is discrete.
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To see (b), it suffices to show that the set {1} U (SN A, ), a translate of X,,, is closed
and discrete in (. This set is closed because 1 adjoined to any subset of S yields a closed
set. It is discrete at points of .S, and it is discrete at 1 because U, is a neighborhood
of 1 whose intersection with this set is 1.

Let us verify (c). Since {1} U (SN A,) C U, for each n € w, we have

AXrnJr] g LT B l7n+1 g I l:'rn+1 : lJn+I g h- []n g Vn ()

From the definition of the sets V, it follows that V},,; C V,,H CV, foreachn ¢ w
and the set K = [, V. is disjoint from G, for &' C P. Now apply (x) to conclude
that all cluster points of the family {X,: n € w} lie in A, that is, outside of G. This
means that this family is locally finite in G. Adjoining the single set {S \ Uy} cannot
destroy local finiteness.

We noted in the proof of (1) that (S") D (S\ {1}). Thus S’ generates G algebraically
if S does. O

For our principal result, Theorem 6.6. we use a couple of simple lemmas.

Lemma 6.4. Let X be a subset of a topological group G and U an open neighborhood
of the identity in G. Then there exist an ordinal v and a subset Y = {r,: a < v}
of X such that x5 ¢ . - U whenever & < 3 < v and X CY -U. Further, if V is
a neighborhood of 1 in G with V=" = V and V* C U then the set Y is uniformly
V-discrete in G.

Proof. Straightforward recursive construction. O

Lemma 6.5. If {O,: n < w} is a symmetric open basis at the identity of a topological
group G and for each n < w the set F,, C G satisfies F,, - O,, = G, then F = U,KW, F,
is dense in G.

Proof. If 11" is a nonempty open subset of G, then there exists an & € G and n < w such
that x-O,, € W. Then & € y-O,,. for some y € F,,, whencey € x-O;' =.r-0O, CW.
Sowehavey c WNF,CWNF#£() O

Theorem 6.6. Every metrizable topological group G has a suitable set. Further, if G is
not compact, it has a closed suitable set.

Proof. By Theorem 6.3, it suffices to prove that a metrizable topological group i has
a suitable set. Let {V;;: n € w} be a base at the identity in G satisfying Vi = G.
V,f+, C V, and V,-! =V, for each n € w. By Lemma 6.4, for every n € w we can
define a subset F,, = {&,,.o: @ < 7,} of V}, so that

1) Vi, ©Fn - Vigrs

(1) Zn 3 & Tna - Vasr whenever a < ;3 < ,.

Put S =, ., Fn- We claim that the set S is suitable for (. First. we prove that

(S)y-V, =G foreachn € w. (1
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Indeed. it suffices to show that
EFy - Fy--- - E, -V, =G toreach n . (2)

We prove (2) by induction on . The equality F5 -1y = G follows from (i). It (2) is
valid for some n € w, then (i) implies that

I"() ) Fl """ Fu : Pﬂn—H ."vllf.z 2 E) : Fl """ Fn "'71!-{-1 =G,

This proves (2), and hence (1). Since the sets 1), form a base at the identity of (. the
definition of 5, (1) and Lemma 6.5 imply together that (S) is dense in G. It remains to
show that S is closed and discrete in G\ {1}. Let & € (¢ be arbitrary, » # |. There exists
n & w such that . ¢ V.. Since Fy, C 1} for each b € w, we have Fy, N (G \ Vi) =0
whenever & > n. Therefore. G\ ¥, can intersect only the sets Fy. Fy,....F,. From
(ii) and ‘ﬂfH Z Vo4 it follows that the set F), is uniformly V), -discrete in G, and
hence is closed discrete in (&; 7. € w. Therefore, the union F' = Fo UF,U---UF,
i1s a closed discrete subset of (¢ and there exists an open neighborhood W™ of . in
(i whose intersection with F' contains at most one point. Clearly, the neighborhood
O =W N(G\ V,) of r has the property | N S| < 1. This proves that S is closed and
discrete in G\ {1}.
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