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Abstract 

It is shown that for each positive integer 7~. there exists a nondiscrete Hausdorff topological group 
of cardinality N, with no proper subgroup of the same cardinality and with each proper subgroup 
discrete. This result is typical of those proved here using a method introduced by A.Yu. Ol’shanskii. 
It is also shown that there exists a continuum of pairwise algebraically nonisomorphic nondiscrete 
Hausdorff topological groups, each of which contains every finite group of odd order and has all 
of its proper subgroups finite. 0 1998 Published by Elsevier Science B.V. 
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1. Free amalgams 

Using the method of cancellation diagrams, Ol’shanskii and his (former) students 

have constructed many important examples of groups with prescribed properties (see, for 

example, [ 121). On the other hand, it was shown by Shelah [14] and Ol’shanskii [l 1] 
that there are infinite nontopologizable groups, that is, groups which admit no Hausdorff 

topological group topology other than the discrete topology. In [7] we prove Theorem A 

below which is applied in this paper to produce several new results. Theorem A itself was 

proved by applying Ol’shanskii’s method to the construction of nondiscrete Hausdorff 

topological groups with prescribed properties. 

In order to formulate the results, we need the following definitions. 
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Definition 1. Thefree amalgam R’ of an arbitrary set of groups {GP}I-LE~ is defined to 

be the set 

with G, n G, = 1 whenever I_L # u. 

Definition 2. The mapping g : 0’ + G is an embedding (respectively, topological em- 

bedding) of the free amalgam 0’ of a set of groups (respectively, topological groups) 

G,, p E I, into a group (respectively, topological group) G if it is injective and G, is 

isomorphic (respectively, topologically isomorphic) to g(G,) for each p E I. 

Theorem A [7]. The free amalgam 0’ of nontrivial groups {GIL}PE~, [I[ > 1, without 

involutions can be embedded in a group G = gp{ Q’ }. Further, for each fixed cardinal 

number ,B < IGI an d normal subgroup L of G containing a nonidentity element in R’, 

the group G admits a nondiscrete Hausdorfsgroup topology such that 

(1) G is a O-dimensional group; 

(2) every neighbourhood of the identity has cardinal@ /Cl; 

(3) if a subgroup H of G is conjugate to a subgroup of G, for some p E I, or H is 

a cyclic subgroup, then H is discrete; 

(4) every subgroup of G of cardinal@ y < ,8 is discrete; 

(5) L is an open subgroup of G. 

Remark 3. The assertions of Theorem A are true for each embedding of the free amal- 

gam 0’ into G using the scheme of 112, $341 if the numbers 7LA, n], . . . , nh in the 

defining relations of rank i, i > 1, in [ 12, p. 271, (1) and (2)], are chosen to satisfy 

the following additional condition: nk > ni for each k = 1,. , h (for details see [12, 

pp. 270-2721). 

Some words about the proof of Theorem A are in order. The topology on the resulting 

group G is introduced by constructing a complete system of neighbourhoods of the 

identity. These neighbourhoods are contained in L and consist of products of “long” and 

“short” words over the alphabet R’ , and every “long” word is Z-aperiodic for small values 

of I. The study of such products is heavily based on Ol’shanskii’s technique developed 

in [12]. 

In this paper we present some applications of Theorem A. But we would like to 

emphasize that this theorem allows one to reformulate many embedding results based 

on the scheme of [ 12, $341 (with the restriction that the resulting group G is not of 

finite exponent, being caused by the additional condition on the choice of the numbers 

r?,A, nl, . . , nk, see Remark 3, and this helps to avoid examples of groups like the infinite 

nontopologizable group in [ 111, since the boundedness of the exponent plays an important 

role in the construction of that group) as a topological embedding of a set of discrete 

groups into a nondiscrete Hausdorff topological group. 
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2. Generating mappings 

At present all embedding constructions, known to the authors, based on the scheme of 

[ 12, $341 are particular cases of an “economical” embedding scheme of a set of groups 

without involutions in a simple group with an arbitrary fixed outer automorphism group 

established in [lo]. In this section we give the following simplified variant of the main 

result in [lo]. 

Let {GfiL)~~~ be an arbitrary set of nontrivial groups without involutions. R’ the free 

amalgam of the groups G,, p E I, and put R = Q’\{ 1). 

Definition 4. A mapping f : 2”\(a) -+ 2 a is called generating on the set R if the 

following conditions hold: 

(1) if C 2 G, for some p E I, then f(C) = gp{C}\{l}; 

(2) if C is a finite subset of R and C $Z G, for each p E I, then f(C) = B, where B 

is an arbitrary countable subset of Q such that C C B and if D is a finite subset 

of B, then f(D) C B; 

(3) if C is an infinite subset of R, then f(C) = UAET f(A), where T is the set of 

all finite subsets of C. 

For example, a generating mapping f on R can be defined in the following way: 

if C E 2O\{S} and C = UpLEICp, where C, = C n G,, p E I, then f(C) = 

(U&gPKJ)\{l1 ( we assume that gp{C,} = { 1 } if C, = 0). It is obvious that in 

order to define a generating mapping f on R, it is sufficient to define it on finite subsets 

C of 0 such that C g G, for each p E I. 

The meaning of Definition 4, which played a central role in [lo], is the following. If we 

would like to embed the free amalgam 6” of the groups G,, ,LL E I, into a group G having 

a nontrivial normal subgroup L (possibly G = L) with a “well-described’, but rather 

complicated if necessary, lattice of subgroups, then it is quite natural to construct G in 

such a way that every noncyclic subgroup of L is conjugate in G to a subgroup gp{ C} n L 

for some nonempty C s Q. Now we note that a mapping f : 2o\{@} + 2” defined by 

f(C) = gp{C} I- R is generating on the set R. One of the assertions of Theorem B 

given below is that for a given generating mapping f on Q (with an additional unessential 

condition, see the statement of Theorem B), we can arrange an “economical” embedding 

(in the previous sense) of 0’ into G = gp{ Q} with the property that f(C) = gp{C} n R 

for each nonempty subset C of 6). Thus we can define a subgroup lattice of the normal 

subgroup L of G by setting a generating mapping on R. For example, a Tarski monster 

of exponent p (that is, an infinite group all of whose proper subgroups are cyclic of 

prime order p) can be constructed (for a sufficiently large prime p) by embedding the 

free amalgam of a countable family of cyclic groups of order p into a group G = 1, if 

we define f(C) = Q for any C 2 Q such that C g G, for each p E I. 

Let G = gp{Q} and f an arbitrary generating mapping on R. Every word over the 

alphabet Q can be considered as an element of the group G, but this correspondence is not 

one-to-one, of course. We say that X is a minimal word in G if it follows from X = Y 
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in G that (X 1 < 1 Y 1, where 12 I denotes the length of the word 2. Let W be the set of 

all nonempty words over the alphabet 0 written in normal form; that is, every element 

X in W is written in the form Xt . . . xk, where each Xl, 1 < 1 < k, is a nontrivial 

element of G,(l), ~(1) E I, and p(Z) # ~(1 + 1) for 1 = 1,. . . , lc - 1. Then a mapping 

F : 2w\{0} --f 2” is defined in the following way: if C C W and C # 0, then let V be 

the set of all letters occuring in the expressions of the words of C. Now set F(C) = f(V) . 

A simplified version of the main result in [lo] is 

Theorem B [lo]. Let gP : G, + H be a set of arbitrary homomorphisms of groups with 

kernels NP, p E I, such that a system of subgroups {gP(GP)}PEr generates H. Let 

{N&II 7 II & I, be the set of nontrivial groups of the set {NP}PEr, and let 0: be 

the free amalgam of the groups NP, ,LL E II. If III 1 > 1 and f is an arbitrary generating 

mapping on R such that f(C) n 62; # 0 if C g G, for each p E I, then the free amal- 

gam R’ of the groups G, can be embedded in a group G = gp{0} without involutions 

with the following properties: 

(I) the free amalgam 0; is embedded in a normal simple infinite subgroup L of G 

such that G/L 2 H; 

(2) AutL % G (and so OutL ” H) and ifg E G@L\Qi, lo E I, then the mapping 

g:L 4 g -‘Lg is a regular automorphism of L (that is, g(a) = a tf and only 

if a = 1) if and only if there is no c E G, fl ti, such that [g, c] = 1, where 

RI = 0: \{ 1). In fact, every automorphism of L is induced by an inner automor- 

phism of G and CG (L) = { 1); 

(3) every subgroup M of G is either a cyclic group or MnL = 1 and the homomorphic 

image of Ad in H ” G/L has an element of infinite order or M is noncyclic and 

conjugate in G to an extension Gc,H~ of a group H’ by a normal subgroup Lc = 

gp{C} n L (that is, Gc,H~ /Lc E H’), where C C fl (we assume that gp{C} = 1 

if C = 8) and H’ < H. Further if C g G, for each ,LL E I, then Gc,H~ < gp{C}; 

(4) if X is a nontrivial minimal word in the group G and C is a nonempty subset of Q, 

then X E gp{C} if and only if F({X}) C f(C) (in particular X E R n gp{C} 

ifand only if X E f(C)); 

(5) if H = G, for some u E I and the homomorphism gP : G, --f H is trivial for 

each p E I\{ u}, then G is the semidirect product of H and L; 

(6) if all groups NP, p E II, are periodic (respectively torsion-free), then G may be 

chosen so that the subgroup L is periodic (respectively torsion-free) too. 

Now we have all the necessary information for the derivation of some consequences 

from Theorem A. 

3. Minimal topological groups 

Our first applications of Theorem A will be devoted to minimal (in the sense of 

Plutonov) topological groups, that is, nondiscrete Hausdorff topological groups all of 
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whose proper closed subgroups are discrete. In 1965 Platonov posed a problem in [3, 

Problem 1.741 on the characterization of all such groups. Isiwata [2] and Robertson and 

Schreiber [13] proved that a locally compact abelian group G is minimal if and only if 

G is topologically isomorphic to R, the additive group of real numbers with the usual 

topology, or T the compact circle group. Morris [5] extended this result by showing that 

the word “abelian” can be omitted, so that this characterization is valid in the class of 

locally compact groups. 

We concentrate on constructions of strongly minimal topological groups. 

Definition 5. A nondiscrete Hausdorff topological group G is called strongly minimal if 

every proper subgroup of G is discrete. 

Of course, every strongly minimal topological group is minimal, and it follows from 

[5] that there are no locally compact strongly minimal topological groups. The simplest 

example of a strongly minimal topological group is a quasi-cyclic group with any nondis- 

Crete Hausdorff topology. In this section we provide a large class of examples of strongly 

minimal topological groups. 

First we prove a very simple result about strongly minimal topological groups. 

Proposition 6. If G is a strongly minimal topological group of cardinal@ cy, then its 

local weight x(G) > cy, every neighbourhood of the identity I of G is of cardinal@ 

CX, and there is no family {Vi}, <%+, of neighbourhoods of 1 such that I.& = IJ-’ and 

IJ; c Ui for each i, j, 1 < i < j < w. 

Proof. Let U be a neighbourhood of the identity 1 of G and /UI < cy. Then gp{U} is a 

proper nondiscrete subgroup of G which is impossible. 

If x(G) < 0, then there exists a local basis {IVi}iE~ for the topology of G with 

IL1 < Q. Choosing one element in every set r/r/;, i E L, we obtain a set M such that 

IAll < cli and gp{M} is a proper nondiscrete subgroup of G. 

Now we suppose that there is a family {U.} z IG~+ of neighbourhoods of 1 such that 

Vi = IJ:’ and IJj c Ui for each i, j, 1 < i < j < w. Then M = n,,, Vi is a proper 

open subgroup of G, since U, 2 M, and we arrive at a contradiction to the definition 

ofG. 0 

A source of countable strongly minimal topological groups is 

Theorem C. Let {GP}PE~, III > 1, be a countable set of nontrivial countable discrete 

groups without involutions. Then the free amalgam 6” of the groups G, can be topolog- 

ically embedded in a countable simple strongly minimal topological group G = gp{R' } 

with the following properties: 

(1) every proper subgroup of G is either a cyclic group or contained in a subgroup 

conjugate to some G,; 

(2) if all groups G,, p E I, are periodic (respectively torsion-free), then G may be 

chosen periodic (respectively torsion-free) too. 
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Proof. Let H be the trivial group and gP : G, -+ H the trivial homomorphism for 

each p E 1. Then the system {NP}PE~ of nontrivial kernels of the homomorphisms gP, 

p E I, is the same as the set of groups G,, p E I. We define a generating mapping f 

on &? = O’\(l) in the following way: if C C R and C 9 G, for each p E I, then 

f(C) = 0. Then Theorem B applies to 0’ and this mapping f and yields a simple group 

G = gp{O’}, and properties (1) and (2) of the theorem follow from assertions (3), (4) 

and (6) of Theorem B and the definition of the mapping f. 

Now Theorem A supplies the group G with a nondiscrete Hausdorff topology, and by 

Theorem A(3) and (1) of this theorem, the topological group G is a strongly minimal 

topological group. 0 

The proofs of Theorems F and G about uncountable strongly minimal topological 

groups are based on Theorem A and the following results from an unpublished manuscript 

[9] of the second author. The proofs of Theorems D and E were based in [9] on a 

generalization of an embedding scheme from [8]. Now these results can be deduced from 

Theorem B. Indeed, Theorem D in the case n = 1 is a simple corollary of Theorem B. 

Theorem D [9]. Let {GP}WE~, 1 II > 1, be an arbitrary set of nontrivial groups without 

involutions such that c,,r IG,( = N,, for some positive integer n. Then the free amal- 

gam 0’ of the groups G, can be embedded (using the scheme of [12, 9341) in a simple 

group G = gp{R’} such that if M is a proper subgroup of G and M is not contained 

in a subgroup conjugate in G to some G,, p E I, then [Ml < N,. 

Theorem E [9]. If; for an infinite cardinal Q, there exists a Jonsson group M of cardi- 

nality (Y (that is, M has no proper subgroups of cardinal@ a) without involutions, then 

M can be embedded (using the scheme of [12, 5341) in a simple Jonsson group G of 

cardinal@ cy+ without involutions. 

Proof of Theorem D for n = 1. Let H be the trivial group and all homomorphisms 

gP : G, -+ H are also trivial. We set R = a’\{ 1) = {aj: 1 < j < WI}, where wi is 

the first uncountable ordinal number. A generating mapping f on R is defined in the 

following way: if C is a finite subset of fl such that C g G, for each p E I, then let 12 

be the maximal ordinal number such that ak is contained in C, and we set 

f(C) = ( u a+‘(% n Gp}) \{ll, 
CLEI 

where O(k) = { aj: 1 < j < Ic} and gp(0) = { 1). It is easy to see that this mapping f 

satisfies all conditions in Definition 4 of a generating mapping on R. 

Theorem B applies to R’ and f and yields a simple group G = gp{@}. Let M be 

a proper noncyclic subgroup of G. Then by Theorem B(3), M is conjugate in G to a 

subgroup generated by a nonempty subset C of 0. If M is not contained in a subgroup 

conjugate in G to some group G,, p E I, then C g G, for each p E I. Hence the 

set C is countable, since otherwise it follows from the definition of the mapping f and 
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Theorem B(4) that f(C) = R and M = G, which completes the proof of Theorem D in 

the case n = 1. 0 

The proofs of Theorem D for n > 1 and Theorem E are more complicated, but 

they involve only Theorem B and some additional set-theoretic considerations. Since the 

manuscript [9] was deposited in VINITI in 1990 and so is not readily available outside 

the former Soviet Union, we have included the proofs of Theorems D and E in Section 5 

to make this paper more self-contained. 

The following result is an analogue of Theorem D for topological groups. 

Theorem F. Let {GP}PEt, (I( > 1, be an arbitrary set of nontrivial discrete groups 

without involutions such that C,,r IGPl = N,, for some positive integer n. Then the 

free amalgam Q’ of the groups G, can be topologically embedded in a simple strongly 

minimal topological group G = gp(0’) such that if M is a proper subgroup of G and 

M is not conjugate in G to a subgroup of any G,, then l&i < N,. 

Proof. The assertion of the theorem follows immediately from Theorem D and Theo- 

remAwithp=N,_l. 0 

Corollary 7. For each positive integer n > 1, there exists a strongly minimal topological 

Jonsson group G of cardinal@ N,. 

Proof. It is sufficient to take a set {G,},,I, where 111 = N, and G, to be the discrete 

infinite cyclic group for each p E I, and apply Theorem F to the set {GPtPE1. 0 

Corollary 7 leads us to pose an open question. 

Open Question 1. For which cardinal numbers (II, does there exist a strongly minimal 

(even minimal) topological group of cardinality cr? 

In [I] a problem was posed about the existence of Jonsson groups of cardinality 

N,. A positive answer to this question would give an opportunity to construct strongly 

minimal topological groups of “large” cardinalities. 

Theorem G. Assume that, for an infinite cardinal a, there exists a discrete Jonsson 

group M of cardinal@ cy without involutions. Then M can be topologically embedded 

in a simple Jonsson strongly minimal topological group G of cardinality Q+ without 

involutions. 

Proof. By Theorem E, the group M can be embedded in a simple Jonsson group G of 

cardinality Q+ without involutions. Then it follows from Theorem A with ,I3 = cx that G 

admits a nondiscrete Hausdorff topology such that G is a strongly minimal topological 

group. •i 
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4. Further applications of Theorem A 

The next application of Theorem A is devoted to the groups of outer topological au- 

tomorphisms of nondiscrete groups and connected with a problem of Kargapolov [3, 

Problem 4.301 on the description of the automorphism groups of topological groups. Ma- 

tumoto [4] proved that every group is algebraically isomorphic to the outer automorphism 

group of some group, and Theorem B presents an embedding scheme of an arbitrary set 

of groups without involutions in a simple infinite group with a “well-described” lattice 

of subgroups and a given outer automorphism group. Now we have 

Theorem H. Let {GP}PcE~, 111 > 1. be an arbitrary set of nontrivial discrete groups 

without involutions, H an arbitrary discrete group. Then there is a nondiscrete HaMsdo@ 

topological group G such that 

(1) the free amalgam of the groups G, is topologically embedded in a simple normal 

injinite open subgroup L of G and G/L 2 H; 

(2) the group AutL of topological automorphisms of the group L is algebraically 

isomorphic to G (and the group OutL of outer topological automorphisms of L is 

algebraically isomorphic to H). 

Proof. Let H = gp{hj}j~~~, and also let {S, = gp{sj}}jEnt be a set of infinite cyclic 

groups. We define g@ : G, + H to be the trivial homomorphism for each ~1 E I, and for 

each j E M, we define a homomorphism gj : S’j + H by setting gj (~5) = hi, t > 1. 

Then Theorem B applies to the free amalgam R’ of the groups {S’j}jEhl and {GCL}@,==, 

(and an arbitrary generating mapping f on R = Q’\{ l} such that f(C) n 0: # 0 

if C g Sj for each j E &I, where 0: is the free amalgam of the kernels of the 

homomorphisms gp, p E I, and gj, j E hf) and yields a group G with a simple normal 

infinite subgroup L such that 

(1) the free amalgam of the groups G, is embedded in L and G/L S H, and 

(2) every automorphism of L is induced by an inner automorphism of G and Cc(L) = 

(11. 
Now it is time for Theorem A to be applied to the resulting group G. By Theorem 

A(5), we may assume that L is an open subgroup of G. It remains to note that every 

inner algebraic automorphism of a topological group is a homeomorphism. 0 

In [5] and [6] Morris records various characterizations, in the class of locally compact 

groups, of the additive group of real numbers lR and the circle group ‘IF. We show 

that there are many nondiscrete topological groups, other than subgroups of R and T, 

satisfying these properties, and so these characterizations are not valid in the class of all 

nondiscrete Hausdorff groups. 

In [6] the following characterizations of the group 7l’ were given: 

(i) every proper closed subgroup has only a finite number of closed subgroups; 

(ii) every proper closed subgroup is finite; 

(iii) every proper closed subgroup is of the form {g: gn = l}, where n is any 

nonnegative integer and 1 denotes the identity element. 
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Now we have the following results. 

Theorem I. There exists a continuum of pairwise algebraically nonisomorphic quasi- 

finite (that is, countably infinite groups all of whose proper subgroups are finite) nondis- 

Crete Hausdofl topological groups containing every finite group of odd order. 

Theorem J. There exists a continuum of pairwise algebraically nonisomorphic nondis- 

Crete Hausdog topological groups in which all proper subgroups are finite cyclic and 

for each positive odd integer n, there is a cyclic subgroup of order n. 

It follows from the results of [5] that the group Iw can be characterized in the class of 

locally compact groups as a nondiscrete group all of whose proper closed subgroups are 

topologically isomorphic to Z, where Z is the discrete group of integers. 

Theorem K. There exists a continuum of pair-wise algebraically nonisomorphic nondis- 
Crete Hausdorff topological groups all of whose proper subgroups are topologically 

isomorphic to Z. 

Proof of Theorems I-K. The existence of the required groups follows from Theorem C. 

That there exists a continuum of the sets of pairwise algebraically nonisomorphic groups 

with the necessary properties can be proved in the same way as in the proof of Theorem 

28.7 of [12]. The idea is that in the course of constructing a group G with the required 

properties, we use the defining relations of rank i, i E J, in [ 12, p. 27 1, (2)] for an infinite 

set J of natural numbers. We also note that the numbers ni, . . , nh (see Remark 3) can 

be chosen in such a way that if we replace, for some ranks, the last number nh by nh + 2, 

then any of groups arising will share all the properties of G. 

Now we choose an arbitrary subset K of J and construct a group GK. The distinction 

between GK and G is as follows. If i E K, then we define the relations (2) of rank i 

for GK in the same way as it was done for G, otherwise we replace the number nh by 

nh +2. It can be proved that, for K # L, the groups GK and GL are obtained as quotient 

groups of the two-generator free group F2 by distinct normal subgroups (since otherwise 

both GK and GL must have involutions). Since the number of distinct homomorphisms 

of FZ onto a fixed countable group GK is countable, the set of all the groups GK contains 

continuously many pairwise nonisomorphic groups, since there are continuously many 

distinct subsets K of the set J. 0 

It is easy to see that if a quasi-finite group G contains copies of the cyclic group of 

order 2” for each n > 1, then G is the quisi-cyclic group Czm, since an element g E G 

of order 2n is in the centre Z(G) of G (see, for example, [12, Corollary 7.41) and so the 

group G is abelian. Therefore, there is no strongly minimal topological group G such 

that all proper subgroups of G are finite cyclic and every finite cyclic subgroup can be 

embedded in G. Thus it is quite natural to pose the following 

Open Question 2. Let G be a nondiscrete Hausdorff topological group with the property 

that every proper closed subgroup of G is finite cyclic. If every finite cyclic group can 



114 S.A. Morris, VN. Obraztsov / Topology and its Applications 84 (1998) 105-120 

be embedded in G, is G necessarily topologically isomorphic to a subgroup of the circle 

group ‘F? 

All quasi-finite nondiscrete Hausdorff topological groups constructed in this paper are 

not of bounded exponent, because of Remark 3. On the other hand, we can produce the 

following modification of Ol’shanskii’s example of an infinite nontopologizable group 

in [Ill. 

Theorem L. For any sufJiciently large prime p, there exists a continuum of pair-wise 

nonisomorphic infinite nontopologizable groups of exponent p’ all of whose proper sub- 

groups are cyclic. Every one of these groups is a central extension of a Tarski monster 

of exponent p by a cyclic central subgroup of order p. 

Proof. We repeat essentially the argument in the proof of Theorem 31.5 [ 121. 

Let G be a Tarski monster of exponent p constructed using the scheme of [12, $251. 

This construction induces the presentation G = F/N, where F is a free group. Next, 

we form an extension T = F/[F, N] of G by the central subgroup N’ = N/[F, N]. It 

follows from [ 12, Corollary 3 1.11 that N’ is a free abelian group such that N’ = Ni $ Ni, 

where N; is an abelian group freely generated by elements of the form Rk = Ai [F, N], 

where Ak runs through the set of periods of all possible ranks. (The precise definition 

of periods of rank i, i 3 1, can be found in [12, pp. 270, 2711, but the reader can 

consider the set {AL} as a “minimal” set of elements of G with the property that every 

element of G is conjugate to a power of some period Ak.) Since all Rk are in the 

centre of H = T/N:, it follows that the subgroup L consisting of all products of the 

form nk: RF, where xk Sk = 0, is normal in H. It is obvious that the order of the 

coset RI L = R?L = . . . = C in the quotient group A = H/L is infinite. Now we put 

K = A/gp{ CP}. Thus, K is an extension of G by a cyclic central group gp{ C}/gp{ 0) 

which we call gp{D}. 

Now we verify that for any X E K\gp{D}, we have that Xn E gp{D}\{ l} in K. 

Since K/gp{D} = G, we have that X is a conjugate in K/gp{D} of a power Ai of 

some period Ak, where 0 < 1 < p. Then, replacing X by a conjugate, we may assume 

that X = AiDt for some integer t. Hence 

xp = (A;D~)~ = (A$(D~)* = it f i 

in K, since 0 < 1 < p. Thus, the set of all nontrivial elements of the group K is the union 

of finitely many sets of solutions to equations of the form XP = a (where the right-hand 

side a takes p - 1 nontrivial values in gp{ D}) and the finite set gp{ D}\{ 1). Therefore, 

if K is given a Hausdorff topology, then the complement of the identity is closed in K, 

being the union of finitely many closed subsets, and the topology is discrete. 

Since there are continuously many pairwise nonisomorphic Tarski monsters of expo- 

nent p constructed using the scheme of [12, $251 (see [12, Theorem 28.71 or the proofs 

of Theorems I-K), the proof of the Theorem is complete. 0 

Theorems I, J and L stimulate us into posing one more open question, 



S.A. Morris, VN. Obraztsov / Topology and its Applications 84 (1998) 105-120 115 

Open Question 3. Does there exist a quasi-finite group of bounded exponent which 

admits a nondiscrete Hausdorff topology? 

5. Proofs of Theorems D and E 

Let {Gplp~~. 111 > 1, be an arbitrary set of nontrivial groups without involutions, 

R’ the free amalgam of the groups G,, ~1 E I, Q = Q’\(l), and let o be the minimal 

ordinal number with ICt’(o)l = IQl, h w ere W(Q) = {/3: ,O < o}. If C E 2”, then 

C = U,,I C,, where C, = C I- G,, and we set C’ = (UPEI gp{C,})\{ l} (we assume 

that gp{C,} = (1) if C, = 0). 

Definition 8. A set {CZ: C, E 2”\(a)}, i E W(a)} is a regular decomposition of the 

set Q dejined by a subser @ = {ui: i E UT(a)} of 0 if the following conditions hold: 

(1) Ui<a ci = n; 

(2) ni $ lJjcz Cj for each i, 1 < i < a; 

(3) Cr = gp{ai}\{ l}, and if i > 1, then Ci = ({ui} U iJjci Cj)‘\(Uj<i Cj). 

Let cy 3 IQ. Then it is easy to see that R always has a regular decomposition (which 

is not unique). Indeed, R can be represented in the form R = {bj: j E IV(a)}. We set 

al = hr and Cr = gp{ar}\{l}. N ow let i E W(Q):), i > 1, and assume that we have 

defined aj and Cj for each j < i. We note that the set Q\(U,,, Cj) # 0, since otherwise 

IQ\ < IlV(cu)I, and in th’ is set we choose the element bk with the minimal index k. Then 

we set uL = bk and Ci = ({ai} U Ujci Cj)‘\(Ujci Cj). As a result, we obtain a regular 

decomposition {C;: i E IV(a)} of R defined by the set @ = {ai: i E IV(a)}. 

Lemma 9. Assume that cy 3 LJI and {Ci: Ci E 2”\(g), i E IV(a)} is a regular 

decomposition of 0 dejned by a set @ = {ai: i E W(Q)} such that {al,az} g G, 

for each p E I if D = Uicwl C, is not contained in any G,, p E I. Then there is a 

generating mapping f on D such that 

(1) f(Uj~iCj)=Uj~iC3foreachi<wl; 
(2) if B C D and B g G, for each p E I, then al, a2 E f(B); 

(3) if D e G, for each ,u E I, bl E Ci and b2 E Cj for some j < i < WI, then 

f({bl, b2t ~1, ~2)) = f({ai, a~ > ~2)); 

(4) ifB C D, B g G, for each 1-1 E I and IBI = Nl, then f(B) = D. 

Proof. We define a mapping f on nonempty subsets of D in the following way. If 

C E 2D\{S} and C C G, for some ,LL E I, then we set f(C) = gp{C}\{l}, and if 

C= {b,, . . . . bk} C D, k > 2, b, E C,,, 1 < s < k, and C $Z G, for each I_L E I, then 

we define f(C) = UjG, C,, where i = max(ir,. . . , ik). 

It follows from Definition 8 of a regular decomposition of Q that if ai E @ and 

ai E G, for some p E I, then Ci c G,. Moreover, if we set IIj,y = {at: t < j} n G,, 

where j E W(o) and v E I, then Ci C gp{II,,,}, and hence C, is a countable set for 

each s E W(w,). Therefore, if C = {bl~ . . , bk} is a finite subset of D, then f(C) is 
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a countable set. It is obvious that c’ C f(C). Now if E = {el, . . , en} is contained in 

f(C), then by the definitions of the mapping f and a regular decomposition of Q, we 

obtain that f(E) 5 f(C). Th us. completing the definition of f on infinite subsets of D 

(using Definition 4(3)), we obtain that f is a generating mapping on D. 

Assertions (l)-(3) of the lemma follow immediately from the definition of the mapping 

f. Let B C D, B 9 G, for each 1-1 E I and (B( = Ni. Then B g UjG,Cj for each 

i E lV(tii), since C, is a countable set for each i < i~i. Hence by the definition of the 

mapping f, f(B) = D, which completes the proof of the lemma. 0 

Lemma 10. Let the free am&gum R’ of the groups G,, p E I, be of cardinality Q 

greater than NI, ~1 and 02 the minimal ordinal numbers corresponding to cardinal 

numbers m and m+, respectively: where NI < m < 101. Let 

{ci: c, E 2”?\(S), i E W(Q)} 

be a regular decomposition of R dejned by a set @ = {a,: i E W(a)} such that 

{ai,a1,a2} $Z G,f or each i E H-(o~)\M’(ol) and p E I, and also let DI = Uiicv, Ci 

and D2 = Uicuz C,. If fl is a generating mapping on Dl, then there exists a generating 

mapping f2 on 02 with the following properties: 

(1) fl is the restriction of f2 to DI; 

(2) f2(Ujgi C,) = iJjGi Cl,, for each i E W(cr~)\W’(a~); 

(3) if B & D2, B g D1 and B g G, for each p E I, then al, a2 E fz(B); 

(4) if 61 E Ci and b? E Cj, where (~1 < i < a2 and J’ < i, then there exists a finite 

subset E of DI such that f2({bl.b2,u,,a?}) = f~({u+,} U E); 

(5) assume that fl (C) = D f 1, or each subset C of D1 such that ICI = m and ifthe set 

{al, u2} is not contained in anv group G,,, p E I, then C g G, for each ,LL E I. 

Then if B C: Dz, B g G,, for each 11, E I and [ B1 = rn+, then fz (B) = Dl. 

Proof. We set fz( C) = f 1 (C) for all nonempty subsets C of D1 and proceed by induction 

on i, (;lii < i < ~2, Assume that a mapping f2 has been defined on the set of all nonempty 

subsets of lJ3<” C’j, f2 is a generating mapping on this set and if i > ~1, then assertions 

(l)-(4) (for fz defined on lJjci cl) of the lemma are true. 

Now we define a value of f?(C) f or each nonempty subset C of Ujc, Cj. Consider the 

subsets @i = {aj: j < ai} and Q2.i = {u,r: cyi 6 j < i} (Q2.i = Q) in the case i = cyi) 

of the set Cp. If i > ~1, then on the set Q2.i we introduce the ordering of the set lV(oi) 

(or of an initial segment of it). Hence @2.i = {dj: j < al or j < p, /3 E W(cri)}. 

On the set !P of all finite nonempty subsets of the set @I we introduce a linear ordering 

in the following way. If {Q, ~ . a,,} and {a], , . . . aj,< } are contained in !P, where 

1 <iI < ... < ih < cyi and 1 < ji < . < j, < cri, then we first compare the numbers 

ik and j,. If these numbers are distinct, say ik > j,, then we write {ui, , . . , ai,} > 

(aj,. . . .orj_}. and if ii; = j,, then we compare ik-1 and js-i, and so on. Finally, if 

k > s and ik = j,-, . , . , %k_,s+l = j,, then we define {Q,, . . , nik} > {aj,, . . . , ajq}. 

If C is a finite subset of Uj6, Cj and C C G,, for some ,LL E I, then we set 

f?(C) = gp{C}\{l}. Let ui E G,, v E I, and let {ui, >. . ni,} be the minimal el- 

ement of the set 9 such that f2 ({ a.;, a,, , . . , uik }) has not been defined yet. Then we set 
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f2.1({Ui,Ui,,...,Ui~}) = Uf2(@, h w ere E runs through all nonempty subsets of the 

set A = {ai, ai,, di, , . . . , ail,, di, , al, dl , ~2, dz} for which the values of the mapping fi 

have been defined by this time, where if an element di, of the set @2,i does not exist, 

then it is not contained in A (for example, the value of fi({ui, , . . . , a?,, , aI, CL?}) has 

already been defined). 

Assume that we have defined f2,m( {ai, ai,, . . , ai, }), m 3 1. We denote by A, the 

set of elements of lJjGi Cj which are contained in fz,+({ui,. . . . , ai,}), and let 2’-, be 

the set of indexes of all elements of A, n (@r U @z,~), where the set @z,~ is taken with 

the ordering of IV(or ) (or of an initial segment of it). Then we define 

where if an element d.j of the set Q2.i does not exist, then it is not contained in AA,. 

NOW we define f~,~+r ({ai, ai,, . . . . uik }) = U fz(E), where E runs through all fi- 

nite subsets of the set A& for which the values of the mapping f2 have been defined 

by this time. Finally, we set f2({oi,ui,,. . ,ui,}) = Urn>, fz,m({ai,ui,,. .,uik}). If 

{Cl,. . , es> c f2({% ai,, . . , ai, }) and fz ({ cl, . , c,}) has not been defined yet, then 

we set f2({c1,. . , c, )I = fi({U*, Ui,? ” , Uik,)). 

Claim. If {ui, oi, , . > ai, } $Z G, and uj E f2( {ai, ai,, . . , uik }), j < QI, then dJ E 

f2({& ai,, . . . uik }) as well, if such a dJ- exists, and also if {ai, ai,, . . . , uik } g G, and 

dj E fi({oi,oi,, . . ,ui,}) for some j < QI, then aj E f~({u,,ui,, . . ,ui,}). 

(It follows from the definitions of fz({u.i, ai,, . , ai,}) and the sets Ai, m 3 I.) 

Now we verify that if 

then the definition of fi( {ui, ai,, . . , ai,}) satisfies Definition 4(2) of a generating 

mapping (see Section 2). In fact, for each m > 1, the set f~,~( {oi, ai, , . . . , ai, }) 

is the union of a countable set of countable sets, and hence is countable as 

well. Then f2( { a,, ai,, . , uik}) is a countable set. Let E be a finite subset of 

fz({oi, ai,, . . , ai,}). Then there exists ‘rn > 1 such that E C A,, and either 

f?(E) C f2,m+l({G> ai, 1.. . , ai,>) or f2(E) = f2({airai,, . . ,aik}). And finally, 

Ui E f2({&}) C f2,1({%,%~~~~~ , ai,;}) and G, E f~({ai,}) C .h({ai, Q,, . . 3 aik}) 
for each t, 1 < t < I;. 

Thus we can define the value of f2( {ai, ui, , . . , ai,}) for each {ai,, . . , uik } E P. 

Now we show that, in fact, we have defined f2 on all finite subsets E of Uj<, Cj. If 

E C Ujci Cj, then f2(E) has been defined by the induction hypothesis. If this is not the 

case, it follows from Definition 8 of a regular decomposition of K? that there is a subset 

{Uj,,...,Ujs}, S 3 0, Of@1 U@ ,. 2 L such that {a,, aj,, . , uj$}’ > E. We may assume 

that {nj, , . , uj,} C @2,i, 0 6 T < s, and {aj,,, , . . . aj,, } C ~31. Hence if we consider 

the ordering of the set II’ (or of an initial segment of it) on the set @2,i, then we 

have that uj, = dl,, It < ~1, t < T, and by Claim and Definition 4(2), 
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Therefore, the value of fz(E) has already been defined. 

Completing the definition of f2 on all nonempty subsets of the set UjGi C, (using 

conditions (1) and (3) in Definition 3 of a generating mapping), we obtain that f2 is a 

generating mapping on Ujci Cj. Assertions (l)-(3) of the lemma follow immediately 

from the definition of fi. 

Let br E Ci and b2 E Cj, where j < i, and let {aj, , . , ajs} be the minimal element 

of @ such that {bl,b?,al,az} C f~({ a,, aj, , . , aj.}). By the statement of the lemma, 

{bl, b2, ~1, ~2) g G,, then also {ai, aj, , . . , aj,_ } g G,, and it follows from the definition 

ofthemappingf2thatf2({bl,bz,a~,a2})=f2({ai~ajlr~..,aj,}). 

Proceeding by induction on i, al 6 i < Q 2, we obtain a generating mapping fi on the 

set Dz. It remains to prove assertion (5) of the lemma. 

Let B be a subset of Dr such that B g G,, for each p E 1 and IBI = m+. Then 

by assertion (3) of the lemma, al, u2 E f(B), and it follows from assertion (4) of the 

lemma that we may assume B C @p? = {a, : 1 < j < a~}. Let b be an arbitrary 

element of D2. Then b E Cl for some 1 < ~2. As was noted in the proof of Lemma 9, 

Cl C gp{ (@I U @ZJ+I) fl G,} for some 11 E I, hence ICll < m and there exists 

i E IV(Q2)\IV(cX,) such that i > 1, a, E B and a set T, = {a,: a, E B, s < i} is of 

cardinality m. Applying assertions (4) and (3) of the lemma to all subsets {ai, a,, aI, a2}, 

where a, E T,, we obtain that 

f2({~z,%a?} UZ) = f?({%} UC)> 

where C c DI, ICI = m and al, a2 E C. By the statement of the lemma, we may assume 

that f?(C) = DI, hence fz({a,} UC) = f2({ai} U 0,). It follows from Definition 8 of a 

regular decomposition of R that there is a finite subset E of @r U !& such that b E E’. 

Then by the definition of the mapping f2 and Claim, 

b E E’ C f@i} U E) & f&{oi} UD,) 2 .f2(B). 

Thus fz(B) = Dz. which completes the proof of the lemma. 0 

Proof of Theorem D. Let {CZ: C, E 2”\{0}, i E IV(tin)} be a regular decomposition 

of the set Q = 0’\{ 1) defined by a set Qi = {a,: i E W(wn)} such that {al, ~2) g G, 

for each p E 1. (It is obvious that such a regular decomposition exists.) We set Dt = 

Ujcwt Cj, 1 < t < n. A generating mapping f on fl is defined in the following way: we 

define f on 201 \ { @} in the same way as it was done in Lemma 9, and if n > 1, then we 

use Lemma 10 to complete the definition of f successively on 20z \{a}, . . . , 2Dn \{8}. 

Let H be the trivial group and all homomorphisms gCL : G, -+ H, p E I, are also 

trivial. Then Theorem B applies to R’ and f and yields a simple group G = gp(0’). 

Let M be a subgroup of G such that lM = N, and let A4 be not contained in a 

subgroup conjugate in G to some G,, p E I. By Theorem B(3), M is conjugate in G to 

a subgroup gp{C} for some C C R such that ICJ = N, and C g G, for each ,U E 1. By 

Lemmas 9(4) and 10(5), f(C) = Q, h ence M = G, by Theorem B(4), as required. •I 

Proof of Theorem E. If the group M is countable, then it is sufficient to take 

{G/L}I.LEtV(w,) to be a set of groups isomorphic to M and G as the group in Theorem D. 
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If the group &I is uncountable, then let /?I, ,Bz be the minimal ordinal numbers corre- 

sponding to the cardinal numbers Q and a+, respectively, let {GP}ILEW(D2) be a set of 

groups isomorphic to N, and let R’ be the free amalgam of the groups G,, p < @z. It 

is easy to see that the set R = Q’\(l) h as a regular decomposition {Ci: Ci E 2”\{0}, 

i E W(/%)} defined by a set @ such that Di = UicB, C, = G,\(l), since we may 

assume that R = {bj: j E lI;(,&)}, where {bj: j E n’(/?i)} = G,\(l). and re- 

peat the construction of a regular decomposition of R given after Definition 8. We set 

f(B) = gp{B}\{l} for each B E 2D1\{0} an complete the definition of a generating d 

mapping f on R using Lemma 10. 

Theorem B (with the group H and all homomorphisms gP, p E I&‘(,&*), trivial) applies 

to R and f and yields a simple group G = gp{R’} without involutions. Let K be a 

subgroup of G of cardinality cy+. Every group G,, b < /32, is of cardinality o. then by 

Theorem B(3), K is conjugate in G to a subgroup gp{C}, where C C 0, ICI = LY+ and 

C g G, for each p < 1112. By the hypothesis of Theorem E, Gi is a Jonsson group, hence 

f(B) = Di for each subset B of DI with (BI = a. Then by Lemma 10(5), f(C) = R 

and h7 = G, by Theorem B(4), which completes the proof of Theorem E. El 
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