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A

We give a complete description of the topological spaces X such that the free abelian topological group
A(X ) embeds into the free abelian topological group A(I ) on the closed unit interval. In particular, the free
abelian topological group A(X ) on any finite-dimensional compact metrizable space X embeds into A(I ).
To obtain our description, we study similar embeddings of the free locally convex spaces and continuous
surjections between the spaces of continuous functions with the pointwise topology. Proofs are based on
the classical Kolmogorov’s Superposition Theorem.

1. Introduction

The following natural question arises as a part of the search for a topologized

version of the Nielsen–Schreier subgroup theorem. Let X and Y be completely regular

topological spaces ; in which cases can the free (free abelian) topological group on X

be embedded as a topological subgroup into the free (free abelian) topological group

on Y? This problem has been studied for a long time [4, 10, 11–16, 21–23, 25, 27, 36],

ever since it became clear that in general a topological subgroup of a free (free

abelian) topological group need not be topologically free [8, 4, 10]. Recently a

complete answer was obtained in the case where X is a subspace of Y and the

embedding of free topological groups extends the embedding of spaces [31]. However,

we are interested in the existence of an embedding which is not necessarily a

‘canonical ’ one. Among the most notable achievements, there are certain sufficient

conditions for a subgroup of a free topological group to be topologically free [4, 22]

and the following results.

T 1.1 [13]. If X is a closed topological subspace of the free topological

group F(I ), then the free topological group F(X ) is a closed topological subgroup of F(I ),

where I is the closed unit inter�al.

C 1.2 [22]. If X is a finite-dimensional metrizable compact space, then

F(X ) is a closed topological subgroup of F(I ).

The abelian case proved to be more difficult, and the following is the strongest

result known to date.

T 1.3 [11]. If X is a countable CW-complex of dimension n, then the free

abelian topological group on X is a closed subgroup of the free abelian topological group

on the closed ball Bn.
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C 1.4 [12]. The free abelian topological group A(2) embeds into A(I ) as

a closed topological subgroup.

It is known [28] that the covering dimension of any two free topological bases in

a free (abelian) topological group is the same; this result is similar to the well-known

property of free bases of a discrete free (abelian) group having the same cardinality,

called the rank of the group. Since the rank of a subgroup of a free abelian group

cannot exceed the rank of the group itself, it was conjectured [14, 20] that the

dimension of a topological basis of a topologically free subgroup of a free abelian

topological group A(X ) cannot exceed dimX. It even remained unclear whether the

group A(I #) embeds into A(I ) [14].

In this paper we prove that if X is a completely regular space then the free abelian

topological group A(X ) embeds into A(I ) as a topological subgroup if and only if X

is a submetrizable kω-space such that every compact subspace of X is finite-

dimensional. Another characterization: X is homeomorphic to a closed topological

subspace of the group A(I ) itself. In particular, if X is a compact metrizable space of

finite dimension, then A(X ) embeds into A(I ). Thus, the analogy with the non-abelian

case is complete.

We also study the problem of embedding the free locally convex space L(X ) into

the free locally convex space L(I ). In particular, we show that such an embedding

exists for every compact metrizable finite-dimensional space X.

Our results provide answers to a number of open problems from [20, 14, 38].

2. Preliminaries

The following concept goes back to [19, 8] ; a detailed up-to-date survey is [20].

D 2.1. Let X be a topological space. The (Marko�) free abelian

topological group on X is a pair consisting of an abelian topological group A(X ) and

a continuous mapping i : X!A(X ) such that every continuous mapping f from X to

an abelian topological group G gives rise to a unique continuous homomorphism

f a: A(X )!G with f¯ f aa i.

The free abelian topological group A(X ) always exists and is essentially unique.

If X is a completely regular T
"

topological space, then A(X ) is Hausdorff and

algebraically free over the set X and the mapping i is a topological embedding,

i : X9A(X ) [19, 8, 20]. Since all spaces in this paper are completely regular T
"
, we

shall always identify X with a subspace of A(X ) in the above canonical way and thus

suppress the mapping i altogether in our notation.

All locally convex spaces (LCS, for short) in this paper are real.

D 2.2 [19, 1, 30, 6, 7, 35]. Let X be a topological space. The free locally

con�ex space on X is a pair consisting of a locally convex space L(X ) and a continuous

mapping i : X!L(X ) such that every continuous mapping f from X to a locally

convex space E gives rise to a unique continuous linear operator f a: L(X )!E with

f¯ f aa i.

The free locally convex space L(X ) always exists and is essentially unique. If X is

a completely regular topological space, then L(X ) is separated, the set X forms a

Hamel basis for L(X ), and the mapping i is a topological embedding, i : X9L(X ) [30,
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6, 7, 35]. In the present paper we identify X with a topological subspace of L(X ). One

well-known example is the vector space 2¢ equipped with the strongest locally convex

topology; algebraically, it is a vector space of countably infinite dimension, and a

subset V of 2¢ is open if and only if so are all intersections of V with finite-

dimensional vector subspaces. The space 2¢ can be identified with the free locally

convex space on a countably infinite space with discrete topology.

The identity mapping id
X

: X!X extends to a canonical continuous homo-

morphism i : A(X )!L(X ). The following result was first announced in [33] and later

furnished with a complete proof in [36].

T 2.3. The canonical homomorphism i : A(X )9L(X ) is an embedding of

A(X ) into the additi�e topological group of the LCS L(X ) as a closed additi�e

topological subgroup.

In what follows, we shall often identify A(X ) with a subgroup of L(X ) in the above

canonical way. Denote by L
p
(X ) the free locally convex space L(X ) endowed with the

weak topology.

T 2.4 [6, 7]. Let X be a completely regular space. The canonical mapping

X9L
p
(X ) is a topological embedding, and e�ery continuous mapping f from X to a

locally con�ex space E with the weak topology extends uniquely to a continuous linear

operator f a: L
p
(X )!E.

The weak dual space to L(X ) is canonically isomorphic to the space C
p
(X ) of all

continuous real-valued functions on X with the topology of pointwise (simple)

convergence. The spaces L
p
(X ) and C

p
(X ) are in duality. Denote by C

k
(X ) the space

of continuous functions endowed with the compact-open topology. A topological

space X is called DieudonneU complete [5] if its topology is induced by a complete

uniformity. For example, every Lindelo$ f space is Dieudonne! complete.

T 2.5 (Arhangel’skiı3 [3]). Let X and Y be DieudonneU complete spaces.

If a linear mapping C
p
(X )!C

p
(Y ) is continuous, then it is continuous as a mapping

C
k
(X )!C

k
(Y ).

The space L(X ) admits a canonical continuous monomorphism

L(X):NC
k
(C

k
(X )).

T 2.6 [6, 7, 35]. If X is a k-space, then the monomorphism L(X )9
C

k
(C

k
(X )) is an embedding of locally con�ex spaces.

We shall also use the following fact which can be easily extracted from [34].

T 2.7. Let T : C
p
(Y )!C

p
(X ) be a linear continuous surjection. If Y is

metrizable compact, then X is also metrizable compact.

Let X be a topological space. A collection of continuous functions h
"
,… , h

m
on X,

assuming their values in the closed unit interval I¯ [0, 1] is called basic [26, 32]

if every real-valued continuous function f on X can be represented as a sum

3m

i="
g
i
a h

i
of compositions of basic functions with some continuous functions

g
i
`C(I ).
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2.8. K’ S T [17]. The finite-dimensional cube

In has a finite basic family of continuous real-�alued functions.

Let us recall that for compact metrizable spaces all three main concepts of

dimension (the covering, the small inductive and the large inductive ones) coincide [5].

The following result is of crucial importance for us; it is a corollary of Kolmogorov’s

Superposition Theorem, the Menger–No$ beling Theorem on embeddability of

separable metric spaces of dimension at most n into 2#n+", and the Tietze–Urysohn

Extension Theorem [5].

C 2.9 (Ostrand [26]). Let X be a finite-dimensional compact metrizable

space. Then there exists a finite basic family of continuous functions on X.

For an exact upper bound on the cardinality of a basic family of continuous

functions on a space X of dimension n, see [32] ; however, we do not need it.

All topological spaces in this paper are completely regular T
"
. A topological space

X is called a kω-space [18, 12–16] if there exists what is called a kω-decomposition

X¯5
n`. X

n
, where all the X

n
are compact, X

n
ZX

n+"
for n `., and a subset AZX is

closed if and only if all intersections AfX
n
for n `., are closed. Being Lindelo$ f, every

kω-space is therefore Dieudonne! complete. A topological space X is called

submetrizable if it admits a continuous one-to-one mapping into a metrizable space.

3. Auxiliary constructions

L 3.1. Consider a commutati�e diagram of Banach spaces and surjecti�e

linear mappings:

p1

E1 E2 E3 En. . . . . .
rnrn–1r3r2r1

F1 F2 F3 Fn. . . . . .
qnqn–1q3q2q1

p2 p3 pn

Denote by E¯ lim
KL

E
n

and F¯ lim
KL

F
n
, the FreU chet spaces projecti�e limits of the

corresponding in�erse sequences, and by π : E!F the projecti�e limit of the mappings

π
n

for n `.. Then e�ery compact subspace KZF is the image under the mapping π of

a compact subspace of E.

Proof. Let K be a compact subspace of F. Set K
n
¯ q

n
(K ) for all n `.. According

to the Michael Selection Theorem [37, Theorem 1.4.9], there exists a compact

subspace C
"
ZE

"
such that π

"
(C

"
)¯K

"
. Suppose now that for all k% n we have

chosen compact subspaces C
k
ZE

k
such that π

k
(C

k
)¯K

k
and r

k−"
(C

k
)¯C

k−"
.

Consider the mapping ©r
n
,π

n+"
ª : x* (r

n
(x), π

n+"
(x)) from E

n+"
to E

n
¬F

n+"
. The

subset Q
n
¯²(y, z) : y `C

n
, z `K

n+"
, q

n
(z)¯π

n
(y)´ of the space E

n
¬F

n+"
is compact,

and is contained in the Banach space image of the continuous linear mapping ©r
n
,

π
n+"

ª. Therefore, by the Michael Selection Theorem, there exists a compact subset

C
n+"

ZE
n+"

such that ©r
n
,π

n+"
ª(C

n+"
)¯Q

n
. Consequently, r

n
(C

n+"
)¯C

n
, and

q
n+"

(C
n+"

)¯K
n+"

, which completes the recursion step.
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Finally, put C¯ lim
KN

C
n
; this subset of E is compact, and the property KZ lim

KN
K

n

implies that π(C )¯K.

Lemma 3.2. Let X and Y be kω-spaces. Let h : L
p
(X )!L

p
(Y ) be an embedding of

locally con�ex spaces. Then h is also an embedding of the locally con�ex space L(X ) into

L(Y ).

Proof. As a corollary of the Hahn–Banach theorem, the dual linear map

h*: C
p
(Y )!C

p
(X ) to the embedding h is a continuous homomorphism onto.

Theorem 2.5 says that h* remains continuous with respect to the compact-open

topologies on both spaces, and by virtue of the Open Mapping Theorem, h*: C
k
(Y )

!C
k
(X ) is open. Since for every compact subset CZX the elements of the image

h(C ) are contained in the linear span of a compact subset of Y [3], one can choose kω

decomposition X¯5¢

n="
X

n
and Y¯5¢

n="
Y
n
in such a way that, for every n `., one

has h(spX
n
)Z spY

n
. It is easy to see that the restrictions mappings r

n
: C

k
(Y

n+"
)!

C
k
(Y

n
) and q

n
: C

k
(X

n+"
)!C

k
(X

n
) are continuous onto, and that C(Y )¯ lim

KL
C

k
(Y

n
)

and C(X )¯ lim
KL

C
k
(X

n
). Denote by π

n
, for each n `., the restriction h* r

Ck(Yn)
. The

conditions of Lemma 3.1 are fulfilled, and therefore every compact subset KZC
k
(X )

is an image under the mapping h* of a suitable compact subset of C
k
(Y ). Hence, the

continuous linear map h** dual to h* from the space C
k
(C

k
(X )) to C

k
(C

k
(Y )) is an

embedding of C
k
(C

k
(X )) into C

k
(C

k
(Y )) as a locally convex subspace. Since h

coincides with the restriction of h** to L(X ), Theorem 2.6 implies that it is an

embedding of L(X ) into L(Y ).

L 3.3. Let X be a compact space and let Y be a closed subspace of X. Denote

by π the quotient mapping from X to X}Y. Let the f
k

for k¯ 1,… , n be continuous

functions on X such that their restrictions to Y form a basic family for Y, and let the

g
i
for i¯ 1,… ,m be a basic family of functions on X}Y. Then the family of functions

f
"
,… , f

n
, g

"
aπ,…, g

m
aπ is basic for X.

Proof. Let f : X!2 be a continuous function. For a family of continuous

functions h
"
,… , h

n
`C(I ), the restriction f r

Y
is represented as 3n

k="
h
k
a (f

k
r
Y
)¯

(3n

k="
h
k
a f

k
) r

Y
. Denote by g : X!2 the continuous function f®3n

k="
h
k
a f

k
;

since the restriction g r
Y

3 0, the function g factors through the mapping π, that is,

there exists a continuous function h : X}Y! I with g¯ haπ. For some collection

s
"
,… , s

m
of continuous functions on I one has h¯3m

i="
s
i
a g

i
, which means that

g¯3m

i="
s
i
a g

i
aπ. Finally, one has

f¯ 3
n

k="

h
k
a f

k
3

m

i="

s
i
a g

i
aπ,

as desired.

L 3.4. Let X be a submetrizable kω-space with kω-decomposition X¯5
n`. X

n

such that e�ery subspace X
n

is finite-dimensional. Then there exists an embedding of

locally con�ex spaces Fa : L
p
(X )9L

p
(Y ), where Y is the disjoint sum of countably many

copies of the closed unit inter�al I, such that Fa (A(X ))ZA(Y ).

Proof. Let X¯5
n`. X

n
be a kω decomposition of X with X

n
ZX

n+"
for all

n `.. Since every X
n

for n `. is a finite-dimensional metrizable compact space, then
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for any n `. so is the quotient space X
n+"

}X
n
, and one can choose inductively, using

Ostrand’s Corollary 2.9 and Lemma 3.3, a countable family of continuous functions

f
n,i

for n `., i¯ 1,… ,k
n

with k
n
`. from X to I such that for each n `. the

following are true:

(1) the collection f
m,i

, with i¯ 1,… ,k
m
, m¯ 1,… , n, is basic for X

n
;

(2) f
n+"

r
Xn

3 0 for all i¯ 1,… ,k
n+"

.

Denote the above family of functions f
n,i

by &, and let Y¯G
f`& I

f
be the disjoint

sum of countably many copies of the closed unit interval I. For every f `& denote by

O
f
the left endpoint of the closed interval I

f
, regarded as an element of the free abelian

group A(Y ).

Define a mapping, F, from X to the free abelian group A(Y ) by letting

F(x)¯ 3
i=",

…,k
"

f
",i

(x) 3
n&

#,i=",
…,kn

( f
n,i

(x)®O
n,i

)

for each x `X. The mapping F is well-defined, because in the second sum all but

finitely many terms are vanishing in the free abelian group A(Y ) for every x `X. The

restriction of F to every X
n

is continuous, which follows from the continuity of each

mapping f
m,i

: X
n
! I

fm,i

ZY with m% n, i¯ 1,… ,k
m

and the continuity of

subtraction and addition in A(Y ). Therefore the mapping F : X!A(Y ) is continuous.

If viewed as a continuous mapping from X to the locally convex space L
p
(Y ), it

extends to a continuous linear operator Fa : L
p
(X )!L

p
(Y ).

Let h : X!2 be a continuous function. We shall show that there exists a

continuous linear functional ha on the linear subspace Fa (L
p
(X )) such that ha aF r

X
¯

h. This would mean that Fa (L
p
(X )) is isomorphic to L

p
(X ), as desired.

Construct recursively, making use of the Properties 1 and 2 above, a countable

family of continuous functions h
n,i

, with i¯ 1… ,k
n
, n `., from I to 2 such that for

every n `. and for all x `X
n
, one has

h(x)¯ 3
i="

…,km,m%n

(h
m,i

a f
m,i

) (x).

Let us recall that f
n,i

r
X

"

3 0 for all n& 2 and i¯ 1,… ,k
n
. It is easy to deduce

inductively from this fact that for any n& 2 one has

3
i="

…,kn

h
n,i

(0)¯ 0.

Define a continuous mapping H from Y to I by letting H(y)¯ h
n,i

(y) whenever

y ` I
n,i

, n `.. Extend H to a continuous linear functional Ha : L
p
(Y )!2 and denote

its restriction to Fa (L
p
(X )) by ha . We claim that ha aF r

X
¯ h, or, which is the same, that

for every n `. one has ha aF r
Xn

¯ h. Indeed, for an arbitrary x `X
n

one has:

(ha aF ) (x)¯Ha (F(x))¯Ha 0 3
i=",

…,k
"

f
",i

(x) 3
#
%m%n,

i=",
…,kn

( f
m,i

(x)®O
m,i

)1
¯ 3

i=",
…,k

"

H( f
",i

(x)) 3
#
%m%n,

i=",
…,kn

H( f
m,i

(x)®O
m,i

)

¯ 3
i=",

…,km,
m%n

(h
m,i

a f
m,i

) (x)® 3
#
%m%n,

i=",
…,kn

h
m,i

(0)¯ h(x)®0¯ h(x).
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4. Main results

T 4.1. For a completely regular T
"
-space X the following are equi�alent:

(i) the free abelian topological group A(X ) embeds into A(I ) as a topological

subgroup;

(ii) the free topological group F(X ) embeds into F(I ) as a topological subgroup;

(iii) X is homeomorphic to a closed topological subspace of A(I ) ;

(iv) X is homeomorphic to a closed topological subspace of F(I ) ;

(v) X is homeomorphic to a closed topological subspace of 2¢ ;

(vi) X is a kω-space such that e�ery compact subspace of X is metrizable and

finite-dimensional;

(vii) X is a submetrizable kω-space such that e�ery compact subspace of X is finite-

dimensional.

Proof. (i)3 (iii) Since the space X is Lindelo$ f (as a subspace of A(I ), see [2]) and

hence Dieudonne! complete, the group A(X ) is complete in its two-sided uniformity

[33] and therefore closed in A(I ) ; but X is closed in A(X ).

(ii)5 (iv) See Theorem 1.1.

(iii)5 (v)5 (iv) The result of Zarichnyı3 [39] states that the free topological group

F(I ) and the free abelian topological group A(I ) are homeomorphic to open subsets

of 2¢. Now it follows that X is homeomorphic to a closed subset of an open subset

of 2¢. Since X is also kω, it is easy to construct a homeomorphism of X with a closed

subset of 2¢ with the help of standard arguments from infinite-dimensional topology.

(v)3 (vi) The space 2¢ ¯ lim
MN

2n is a kω-space such that every compact subspace

of it is metrizable and finite-dimensional, and this property is inherited by closed

subsets.

(vi)5 (vii) See [15].

(vii)3 (i) Let X be a submetrizable kω-space such that every compact subspace of

X is finite-dimensional. According to Lemma 3.4, there exists an embedding of locally

convex spaces Fa : L
p
(X )9L

p
(Y ), where Y is the disjoint sum of countably many

copies of the closed unit interval I, such that Fa (A(X ))ZA(Y ). By virtue of Lemma

3.2, Fa is also an embedding of locally convex spaces L(X )9L(Y ). Its restriction to

A(X ) is an embedding of topological groups (Theorem 2.3). Now apply Theorem 1.3.

T 4.2. For a completely regular T
"
-space X the following conditions are

equi�alent.

(i) The free locally con�ex space L(X ) embeds into L(I ) as a locally con�ex

subspace.

(ii) The free locally con�ex space with the weak topology L
p
(X ) embeds into L

p
(I )

as a locally con�ex subspace.

(iii) The linear topological space C
p
(X ) is an image of C

p
(I ) under a linear

continuous surjection.

Proof. (ii)5 (iii) These are just the dual forms of the same statement about two

locally convex spaces having weak topology.

(iii)3 (i) Theorem 2.7 implies that X is metrizable compact, and so it now suffices

to apply the previous implication together with Lemma 3.2.

(i)3 (iii) This follows from the fact that C
p
(X ) is the weak dual space to L(X ).
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A compact space X which can be represented as a countable union of finite-

dimensional compact subspaces is called a countable-dimensional space.

T 4.3. Let X be a completely regular T
"
-space such that the free locally

con�ex space L(X ) embeds into L(I ) as a locally con�ex subspace. Then X is a

metrizable countable-dimensional compactum.

Proof. The space L(I ) is a countable union of closed subspaces sp
n
(I ) formed by

all words of reduced length at most n over I for n `.. Since sp
n
(I ) is a union of

countably many closed subspaces, each of which is homeomorphic to a subspace of

the nth Tychonoff power of the space 2¬[IG (®I )G ²0´] [2], the space sp
n
(I ) is

topologically finite-dimensional. Theorem 2.7 finishes the proof.

T 4.4. Let X be a finite-dimensional metrizable compactum. Then the free

locally con�ex space L(X ) embeds into L(I ) as a locally con�ex subspace. (Equi�alently,

C
p
(X ) is an image of C

p
(I ) under a linear continuous surjection.)

Proof. As a consequence of Lemmas 3.3 and 3.4, L
p
(X ) embeds as a locally

convex subspace into the free locally convex space in the weak topology over a

disjoint sum of finitely many homeomorphic copies of the closed interval. The latter

LCS naturally embeds into L
p
(I ) (and, in fact, is even isomorphic to it). Now

Theorem 4.2 is applied.

R 4.5. Surprising as it may seem, in view of Corollary 4.3 the free locally

convex space L(2) does not embed into L(I ), in spite of the existence of canonical

embeddings A(2)9L(2) and A(I )9L(I ) and a (non-canonical) embedding A(2)9
A(I ). It is yet another illustration of the well-known fact that not every continuous

homomorphism to the additive group of reals from a closed additive subgroup of an

(even normable) LCS extends to a continuous linear functional on the whole space.

Such misbehaviour is also to blame—at least partly—for an apparent lack of progress

in attempts to make the Pontryagin–van Kampen duality work for free abelian

topological groups [24, 29].

R 4.6. It was kindly pointed out to the authors by M. Levin and Y.

Sternfeld that by developing our technique further one can construct a linear

continuous surjection from C
p
(I ) onto C

p
(X ), where X is the one-point compacti-

fication of the disjoint union of the Euclidean cubers In for n `.. Therefore, the

existence of an embedding L(X )9L(I ) does not necessarily imply that the

compactum X is finite-dimensional.

On the other hand, the space L(Q), where Q¯ Ib
! is the Hilbert cube, admits no

embedding into L(I ) in view of Theorem 4.3: the Baire category arguments show

easily that Q is not countable-dimensional.

C 4.7. The following conditions are equivalent for a completely

regular T
"
-space X :

(i) L(X ) embeds into L(I ) as a locally convex subspace;

(ii) X is a countable-dimensional metrizable compactum.

R 4.8. Another closely related open problem is that of direct character-

ization of the covering dimension of a completely regular space X in terms of the
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linear topological structure of the space C
p
(X ) (motivated by the principal result in

[9]). For metrizable compacta a description of dimension in the language of basic

functions due to Sternfeld [32] might be useful.

R 4.9. Our results also provide answers to two problems from the book

Open Problems in Topology [38].

P 511. Is A(I #) topologically isomorphic with a subgroup of A(I )?

Yes (cf. Theorem 4.1).

P 1046. Assume that C
p
(X ) can be mapped by a linear continuous

mapping onto C
p
(Y ). Is it true that dimY%dimX? What if X and Y are compact?

No, in both cases (cf. Theorem 4.4).
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