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ABSTRACT. In 1977, Taylor introduced limit laws as natural analogues for 
topological algebras of algebraic laws for abstract algebras, and showed, 
in analogy to Birkhoff's theorem, that a class of topological algebras is a 
wide variety if and only if it is the class of models Mod(E [J •)) for some 
set E of algebraic laws and some perhaps proper class •) of limit laws. A 
wide variety is a class of topological algebras closed under the formation of 
subalgebras, products and continuous homomorphic images. This paper is 
concerned specifically with wide varieties of topological groups, and limit 
laws in topological groups. The main contributions are as follows. (1) As 
a step towards determining whether 'perhaps proper class' above can be 
strengthened to 'set', a simple necessary and sufficient condition is derived 
for a wide variety to require a set rather than a proper class of limit laws. 
(2) Two closely related families of wide varieties, T(n) and B(n), for n an 
infinite cardinal, are studied in detail. The varieties T(n) have played an 
important role in the theory to date, while the B(n) are studied here for 
the first time. Detailed information about both families is obtained. In 

particular (i) a wide sub-variety of T(n) requires only a set of limit laws in 
addition to those defining T(n), and (ii) B(n) is defined by a set of limit 
laws. (3) A detailed analysis is given of certain simple limit laws in locally 
compact abelian groups. 
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1. Introduction. 

The notions of a variety and a wide variety of topological groups were 
introduced by Morris [8, 9, 10] and Taylor [14], respectively, and have been 
studied extensively since (see [11] and its bibliography). (Taylor in fact 
deals with varieties and wide varieties of general topological algebras.) A 
wide variety of topological groups is a class of topological groups closed 
under the formation of subgroups, arbitrary products, and continuous ho- 
mornorphic images; if the latter condition is weakened to closure under 
quotients, then the class is called a variety. 

A major focus of Taylor's work was the attempt to characterise va- 
rieties and wide varieties by suitable generalisations of the algebraic laws 
which are well known to characterise abstract varieties of groups (see [13] 
and [2], for example). In the topological case, this attempted characterisa- 
tion has been completely successful only in the case of wide varieties. We 
outline the relevant ideas. 

Suppose that D is a directed set and V is any set. Then a limit law 
(with respect to D and V)is a formal expression [rd -• ½], where d runs 
through the elements of D, and each rd is a term in the first order theory 
of groups which has V as its (not necessarily countable) set of variables. 
Given a topological group G and a variable valuation •b: V -• G, such a 
law is satisfied (or holds) with respect to q) in • if the net r•[•b] converges to 
the identity c of G, where for any term r, r[•b] is the term assignment of r 
in G with respect to •b; we may then write G • [r• -• c][•b]. A law [•-• -• e] 
is satisfied (or hotds) in G (or models the law) if e] is satisfied with 
respect to every valuation •b; we may then write G • [rd -• c]. 

It is often convenient to adopt the equivalent view in which, given 
D and V as before, a limit law is a formal expression [r• -• el, where the 
r• are elements of the (abstract) free group F(V) on V, and in which the 
place of valuations •b is taken by maps •b of the free basis V of F(V) into 
G and their canonical extensions to homomorphisms from F(V) to G. 

If •2 is a set of algebraic laws and © is a class of limit laws, then 
it is easy to see that the class of topological groups which model all the 
laws in Z and ©, which we denote by Mod(Z t• ©), is a wide variety. (We 
make the assumption that algebraic laws are over some countably infinite 
set of variables, fixed once and for all.) In an analogue of Birkhoff's famous 
theorem, Taylor [14] proves a converse to the above statement: for any wide 
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variety ]2, there are a set E of algebraic laws and a (perhaps proper) class 
e of limit laws such that ]2 = Mod(E U e). 

Two general problems have prompted our work in this paper. The 
first is the question: Can '(perhaps proper) class' above be strengthened 
simply to 'set'? The second problem is, loosely, to find interesting, non- 
trivial limit laws--for example, laws satisfied in well-understood groups, or 
sets or classes of laws characterising specific wide varieties of interest. 

We do not have a full solution to the first problem above. In Section 2, 
however, we give a simple necessary and su•cient condition for a variety ]2 
to require a set (rather than a proper class) of limit laws for its definition 
(Theorem 2.3). The condition is that there exists a cardinal/• -- /•v with 
the property that, for all topological groups G, G is in ]2 if and only if all 
subgroups of • of cardinality less than or equal to/• are in ]2. Our proof 
is essentially a refinement of the proof of Taylor's characterisation of wide 
varieties. 

Section 3 contains results pertaining to both the problems above. The 
family of wide varieties T(n), introduced by Morris [10], have played an im- 
portant role in the theory to date. For n an infinite cardinal, T(n) is the 
class of topological groups in which every neighbourhood of the identity e 
contains a normal subgroup of index less than n. In Section 3, we note a 
number of elementary but useful facts about T(n), and then show (Theo- 
rem 3.6) that a wide sub-variety of T(n) requires only a set of limit laws 
in addition to those defining T(n). We do not know whether T(n) itself 
requires a proper class of laws for its definition. 

In Section 3, we also consider a new family of wide varieties B(n), 
closely related to the varieties T(n). For any n, B(n) is the class of n- 
precompact topological groups--those topological groups • with the prop- 
erty that • can be covered by fewer than n translates of any open set. We 
introduce a new class of special limit laws, the uniform limit laws, and we 
show (Theorem 3.16) that B(n) is defined by a set of such laws. 

Sections 4 and 5 are concerned with the second of the problems above. 
Section 4 goes some way towards explaining why few simple laws in well 
known topological groups have so far been discovered. The most thor- 
oughly investigated class of topological groups is the class of locally com- 
pact abelian groups, and the simplest limit laws are the sequential laws-- 
those indexed by the directed set of natural numbers. The main result of 
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Section 4 (Theorem 4.11) is that non-totally disconnected locally compact 
abelian groups have no non-trivial sequential laws (in a sense made precise 
in Section 4). Examples are given to show that abelJan topological groups 
may have non-trivial sequential laws if they are totally disconnected, or if 
they are not locally compact. 

Finally, in Section 5, we give a miscellany of results and examples, 
dealing with the relations between some of the varieties studied in previous 
sections, with laws satisfied in particular topological groups, and with sets 
of limit laws defining some specific wide varieties. 

DEFINITIONS AND NOTATION. 

If ]2 is a wide variety (or variety) and X is a Tychonoff space, then 
the free topological group in ]2 on X [8], if it exists, is a topological group 
F¾(X) • ]2 and an embedding i: X -, F¾(X), such that i(X) algebraically 
generates F¾(X), and such that for any topological group G • ]2 and 
any continuous map q% : •lf _• G, there is a continuous homornorphism 
(I,: Fv(X) -• G such that q•: ß o i. 

It is shown in [8] that Fv(X) exists if and only if some member of 12 
contains X as a subspace. Provided that 12 contains a non-indiscrete group, 
the free topolpgical group in 12 on every discrete space exists. If the latter 
is the case, •h•n for a topological group G, we have G • 12 if and only if 
G is the continuous homomorphic image of the free topological group in 12 
on a discrete space with the same cardinality as G. We make substantial 
use below of varietal free topological groups on discrete spaces, and it is 
convenient to exclude from further consideration those wide varieties which 

contain only indiscrete topological groups. 
We frequently use the fact that the class of abstract groups which 

occur, with s.9me topology, in a wide variety ]2 forms an abstract variety in 
the standard' sense of [13] and [2]. It is clear that the underlying group of 
a varietal free topological group is the abstract varietal free group on the 
underlying set of the space concerned. 

For any set, topological space or topological group X, we use X• and 
X• to denote X with the indiscrete and discrete topology, respectively, 
considered as a topological space or topological group, as appropriate. 

It is often convenient to use cardinal numbers as representative sets 
of their own cardinality; for example, we frequently use F(&) as a repre- 
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sentative free group of rank A, for a cardinal A. The cardinality of a set X 
is denoted by X I. 

If (X,L/) is a uniform space and U E L/, then U[x] denotes {y E X' 

2. Laws Defining Wide Varieties. 

For any cardinal A, let 7)h be a set comprising exactly one represen- 
tative from each isomorphism class of directed sets of cardinality less than 
or equal to 2 h. For any wide variety ]2, let ©•v be the collection of nets in 
the abstract free group F(A) which are indexed by directed sets from 
and whose images converge to e in the varietal free group Fv(A•) under 
the canonical homomorphism from F(A). Clearly, O• v is a set. Also let O v 
be the proper class •Jh O• v, where the union is over all cardinals A. Finally, 
let Ev be the set of algebraic laws satisfied by the groups in ]2. We write 
Oh, O and E for O• v, O v and E v, respectively, when the context permits. 

2.1Lemma. If G • Mod(E U Oh) and ]G] _• A, thence]2. 

Proof. Let f be any surjection from A to G. Since G models E, f extends 
algebraically to a surjective homomorphism f' Fv(h•) -• G, so since ]2 is 
closed under the formation of continuous images, it will suffice if we prove 
that f is continuous at e. Therefore it suffices to show that if (wN ' N • 
is a net in Fv(h•) which is indexed by the directed set Af of neighbourhoods 
at e and satisfies wN E N for all N • Af, then f(w•v) converges to e in G. 
Now the set of neighbourhoods at e in Fv(A•) has cardinality at most 2 
so we may assume without loss of generality that Af is in Z)h. Under the 
natural homomorphism from F(A) to Fv(A•), choose arbitrary pre-images 
{VN) of the {WN}. Then clearly the law [VN -• e] is in eh, so (• models 
that law, and therefore f(WN) converges to e in (• as required. [] 

Taylor's characterisation of wide varieties now follows. 

2.2 Theorem. If ]2 is a wide variety, then ]2 - Mod(• U O). 

Proof. Write ]2t = Mod(E U O). To show that ]2 C_ ]2•, it suffices to show 
that Fv(h•) • ]2•, fox' all cardinals A, since every group in ]2 is the contin- 
uous image of such a group. Certainly each Fv(A•) models the laws in 
Fix a cardinal /•; we shall show that Fv(A•) models the laws in O,. Let 
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i'/• • Fv(/•) be the canonical injection. Given any map f'/• -• Fv(A•), 
there is a continuous homomorphism f' Fv(/•) • Fv(A•) such that 
foi = f. Now by definition the laws in 13, hold in Fv(/•) under i, and so 
the continuity of f ensures that they also hold in Fv(A•) under f. Since f 
is arbitrary, Fv(A•) models the laws in 13,. Thus Fv(A•) models all the 
laws in 13, and so 12 C_ 12 •. 

Conversely, if G C 12 •, then G C Mod(E ̧  13•), where A = [G[, and we 
have G • 12, by Lemma 2.1. Thus 12 • C_ 12, and the proof is complete. [] 

We now derive simple necessary and sufficient conditions for a wide 
variety to be defined by a set, rather than a proper class, of limit laws 
(together with a set of algebraic laws, as usual). 

2.3 Theorem. If 12 is a wide variety, then the following conditions are 
equivalent: 

(i) 12 is defined by Y, and a set of limit laws; 
(ii) there is a cardinal l• such that 12- Mod(E tO •a<_, 13a); 
(iii) there is a cardinal I• such that for all topological groups G, G • 12 

if and only if every subgroup H of G satisfying IHI _</• is in 12. 

Proof. Clearly (ii) implies (i). We show first that (i) implies (iii). Thus, 
suppose that 12 = Mod(E to A), for some set A of limit laws. Let X be the 
set of variables which appear in Y• tO A, and let/• - IXI q- R0. Suppose that 
G is a topological group all of whose subgroups of cardinality less than or 
equal to/• are in 12, and let f: X -• G be a variable valuation. Then the 
subgroup H of G generated by f(X) is of cardinality less than or equal 
to/•, is therefore in 12, and therefore models E tO A. Thus any law in E tO A 
holds in H under the valuation f, and therefore also holds in G under f. 
Since this is the case for every valuation f, we have G • 12, and so (iii) 
holds. 

Suppose that (iii) holds, and write 12 
then • models Y• tO 13, by the previous theorem, and so • C 17. Conversely, 
if G G 12 •, then every subgroup of G of cardinality less than or equal to 
is in Mod(E tO 13,), and so, by Lemma 2.1, is in 12. By (iii), we therefore 
have G G 12. Thus (ii) holds, and the proof is complete. [] 
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a. The Varieties T(n)and B(n). 
We recall from Section I that, for any infinite cardinal n, T(n) is 

the wide variety of topological groups in which every neighbourhood of e 
contains a normal subgroup of index less than n. Clearly T(n) contains all 
the discrete groups of cardinality less than n, and contains all indiscrete 
groups. In particular, T(n) requires no algebraic laws, and we have T(n) = 
Mod(A(n)) for some class A(n) containing only limit laws. We begin by 
noting some straightforward results on T(n). 

3.1 Proposition. Let G be a topological group, and suppose that for each 
neighbourhood N of e, HN is a normal subgroup of G such that HN C- 
N. Then G is topologically isomorphic to a subgroup of the product G• x 
1-I;½(G/H•v). In particular, if ]2 is a wide variety and if G:• C ]2 and 
G/H•v • ]2 for each N, then G 

Proof. It is straightforward to check that the map from G into the product 
defined using the identity mapping from G to G• and the projections of G 
into the G/H;½ is an embedding. [] 

3.2 Proposition. Let ]2 be a wide variety. Then ]2 is generated by a set 
of topological groups if and only if 

Proof. If ]2 is generated by a set of groups, then clearly ]2 C_ T(n) for 
any cardinal n greater than the cardinalities of all the generating groups. 
Conversely, suppose that ]2 c_ 
is generated by the class containing all its groups of cardinality less than 
and all its indiscrete groups. The class of groups of cardinality less than 
may clearly be reduced to a set of groups comprising one representative 
of each its topological isomorphism classes. Also, the underlying abstract 
groups of the indiscrete groups in ]2 form an abstract variety, and so they 
are generated algebraically by a single group [13]. Adding this group, given 
the indiscrete topology, to the earlier set therefore gives a set of topological 
groups which generates ]2, as required. [] 

Notice that the proof of the converse part of the preceding proposition 
yields the following result. 

3.3 Proposition. If ]2 is a wide variety such that ]2 C_ T(n) for some car- 
dinal n • Ro, then ]2 is generated by its groups of cardinality less than n. In 
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particular, T(n) (for n • •o) is the wide variety generated by the topological 
groups of cardinality less than n. [] 

It is not difficult to show that if 12 is a wide variety and G is a group 
in the abstract variety underlying 12, then there is a (unique) finest group 
topology with which G occurs in 12. In fact, let 7-/be a set of topological 
groups containing a representative of each topological isomorphism class of 
groups in 12 of cardinality at most IG]. Further, let {(Ha,ha)) be the set 
of all pairs consisting of a group Ha C 7-/and an (abstract) homomorphism 
ha : G --• Ha. Then there is a natural algebraic isomorphism of G into 
the product 1-[a Ha induced by all the maps ha. It is easy to check that 
the topology induced on G by this embedding is as claimed above, and 
indeed is the unique strongest topology on G making all homomorphisms 
from G into groups in 12 continuous. (This argument is a straightforward 
generalisation of one used in Theorem 9.13 of [3].) 

In the case of the variety T(n), we can obtain a particularly simple 
description of the topology just mentioned. 

Fix an infinite cardinal n, and let ]2 be any wide variety of the form 
12 = Mod(A(n) U E) = T(n) N Mod(E), for some set E of algebraic laws. 
Let G be any member of 12, and let /C be the set of kernels of all the 
homomorphisms from G into groups in 12 of cardinality less than n. Note 
that/C is closed under finite intersections: if f•: G • H• and f2: G -• H2 
are two such homomorphisms, then ker(f•)f• ker(f2) = ker(f), where f is 
the obvious homomorphism from G into H• x H2 induced by fl and f2; 
and clearly H• x H2 is in 12 and has cardinality less than n. It follows by 
Theorem 4.5 of [5] that the collection of cosets of all the normal subgroups ß 
in/C is an open basis for a group topology on G. Denote G, when equipped 
with this topology, by G'. 

We claim that G' C 12, and that the topology of G' contains that of 
Now G• E 12, since Gv E Mod(•) and Gv satisfies all limit laws. Also, for 
each neighbourhood N of e in G', there is an open normal subgroup H•v C_ 
N such that the discrete group G/H•v is in 12. Hence, by Proposition 3.1, 
we have G' E 12. Let N be a neighbourhood of e in G with its original 
topology. Since G E T(n), there is a surjective homomorphism f: G --• H, 
for some abstract group H of cardinality less than n, such that ker(f) C_ N. 
If we give H the quotient topology with respect to f, then we have H 
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and so we have ker(f) open in G •. It follows that the topology of G • contains 
that of G, and that this topology is therefore that described above. 

We can use the above analysis to obtain the following explicit de- 
scription of the free topological groups on discrete spaces in the varieties 

3.4 Proposition. Let ¾ be a wide variety of the form ¾: Mod(A(n)t_JE). 
If X is any set, and F is the free group on X in the abstract variety Mod(E), 
then the topology of the varietal free group Fv(X•) is generated by the 
normal subgroups of F of index less than •. 

Proof. By the argument above, the topology of Fv(X•) is generated by the 
kernels of all the homomorphisms from F into groups in ¾ of cardinality 
less than n. If G is an arbitrary topological group of cardinality less than n, 
and f: F -• G is a homomorphism, then clearly If(F)l < n and f(F) C 
Mod(E). Since T(n) contains all topological groups of cardinality less than 
n, we therefore have f(F) • ¾. Since the kernels of f : F -• G and 
f: F -• f(F) are identical, the result follows. [] 

This result can be combined usefully with our description in Section 2 
of the laws Ox v and O v, in the case where ¾ is T(n). Clearly, the varietal 
free group FT(•)(&•) is algebraically the free group F(&), and we have the 
following result. (Recall from Section 2 that for each cardinal •, 79x denotes 
a set comprising exactly one representative from each isomorphism class of 
directed sets of cardinality less than or equal to 2x.) 

3.5 Corollary. The wide variety T(n) is Mod(OT(•)), where 0 •(•) = 
I-ix O• ©, and where, for each cardinal A, O• © is the set of nets in F(A) 
which are indexed by directed sets in 79x and which are eventually in each 
normal subgroup of F(A) of index less than •. [] 

The following theorem reduces the question whether wide sub-varieties 
of T(n) require sets or proper classes of limit laws to the question whether 
T(n) itself does: any wide sub-variety requires only a set of limit laws in 
addition to the class defining 

3.6 Theorem. Let ]2 be a wide variety such that ¾ c_ T(n). Then 
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Proof. Write 12'= Mod(A(n)O Evu O•v). From Theorem 2.2, we have 
12 C_ 12'. To show that 12' C_ 12, Proposition 3.1 shows that it suffices to 
prove that every indiscrete group in 12' is in 12 and that every group in 12' 
of cardinality less than n is in 12. Now an indiscrete group in 12' satisfies 
E v and every limit law, and so is in 12 by Theorem 2.2. If G E 12', then 
G E Mod(E v O O•), and so if G has cardinality less than n, then G • 12 by 
Lemma 2.1. Therefore 12' C 12. [] 

-- 

The most interesting question about T(n) which we are unable to 
resolve is whether T(n) is definable by a set, rather than a proper class, of 
limit laws. We turn to examination of a family of wide varieties related in 
an obvious fashion to the varieties T(n), and for which we can answer this 
question. We borrow a definition and two theorems from [7]. 

3.7 Definition. [7] Let n be an infinite cardinal. A uniform space (X,H) 
is n-precompact if for each U •/2/there is a set {x,} of fewer than n points 
in X such that X = [_J, U[x,]. 

3.8 Theorem. [7] A uniform space (X,b/) is n-precompact if and only if 
for each U • 12l there is a partition of X into a collection of fewer than n 
sets {X,} such that X, x X, C_ U for all c•. [] 

Let B(n) be the class of topological groups which are n-precompact 
in their left uniformity. Then we have the following. 

3.9 Theorem. For each infinite cardinal n, B(n) is a wide variety. 

Proof. The fact that B(n) is closed under the formation of continuous im- 
ages and products follows directly from the definition of n-precompactness, 
and the fact that B(n) is closed under the taking of subgroups follows easily 
from the characterisation of n-precompactness given in Theorem 3.8. [] 

It is clear that the groups in T(n) are n-precompact; indeed, n- 
precompactness is a natural weakening of the topologico-algebraic condition 
defining membership of T(n) to a purely uniform condition. We therefore 
have the following result. 

3.10 Theorem. For each infinite cardinal n, T(n) C_ B(n). [] 

We work now with a fixed infinite cardinal n. 
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Recall that in a uniform space (X,L/), a set D is said to be uniformly 
discrete if there exists U E L/such that D is uniformly discrete with respect 
to U; that is, such that U[d] A D = {d), for all d ED. There is an elegant 
characterisation of n-precompactness in terms of uniformly discrete subsets. 

3.11 Theorem. [7] A uniform space (X, Lt) is n-precompact if and only if 
all uniformly discrete subsets of X have cardinality less than n. [] 

3.12 Corollary. A uniform space (X,L/) is n-precompact if and only if 
every subspace of cardinality exactly n is n-precompact. [] 

It is easy to see, further, that a topological group is n-precompact if 
and only if every subgroup of cardinality exactly n is n-precompact, and 
Theorem 2.3 therefore gives a set of limit laws which define B(n). We go 
on, however, to describe a particularly simple set of such laws. 

Let S be a fixed set of cardinality exactly n, and let L/•(S) be the 
coarsest uniformity on S which makes every map from S into all uniform 
spaces of cardinality strictly less than n uniformly continuous. Equivalently, 
L/•(S) is the coarsest uniformity on S which makes every map-from S into 
all discrete uniform spaces of cardinality less than n uniformly continuous. 
This latter description allows us to see straightforwardly that L/•(S) has a 
basis consisting of all equivalence relations on S with strictly fewer than 
n equivalence classes. (Note that the topology induced on S by L/•(S) is 
discrete, though L/•(S) is not the discrete uniformity.) 

3.13 Theorem. Let (X,L/) be a uniform space, then (X,L/) is n-precompact 
if and only if every map from (S, Lt•(S)) to (X, Lt) is uniformly continuous. 

Proof. First, suppose that (X,L/) is n-precompact, and let 0 ' S -• X be 
an arbitrary map. Given U • L/, there is, by Theorem 3.8, a partition of 
X into fewer than n subsets {X,) such that X, x X, c_ U for all a. If we 
define S. = O-•(X.) for all a, then the equivalence relation I..J.S. x S. is 
in L/•(S), and clearly [.J.S. x S. c_ (½5 x 0)-•(W), so that ½5 is uniformly 
continuous. 

Second, suppose that every map from S to X is uniformly continuous. 
We wish to show that X is n-precompact, and by Corollary 3.12, it will 
suffice if we prove this when [X[ = n. For such an X, fix any bijection 
0 ' S -• X. Then ½5 is uniformly continuous, by hypothesis. Therefore, for 
any U • L/, the set (½5 x 0)-I(u) is a member of L/•(S). Therefore there is 
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an equivalence relation R on $ with fewer than n equivalence classes {R,} 
such that R= [_J, R, xR, C_ (;bx;b)-•(U). Then the sets X, = ;b(R,) form 
a partition of X into fewer than n sets, and we clearly have X, x X, C_ U. 
By Theorem 3.8, X is n-precompact, as required. [] 

We introduce a new class of limit laws, in terms of which we will 
describe the variety B(n). 

3.14 Definition. Let (X,/g) be a uniform space. A uniform limit law on 
(X, L/) is a law of the form [x•yv --4 e], where U runs through the directed 
set L/, and where (xv, Yv) C U for all U 

3.15 Theorem. Let G be a topological group and let q5 ß $ --• G be any 
mapping. Then q• is uniformly continuous with respect to Lt•($) and the 
left uniformity of G if and only if every uniform limit law on ($, Lt•($)) 
holds in G under q•. In particular, all mappings from $ to G are uniformly 
continuous if and only if all uniform limit laws on $ hold in G. 

Proof. First, suppose that ;b is uniformly continuous and let [x•yv --4 e] 
be a uniform limit law on $. Let N be a neighbourhood of e in G. Then 
the set V = {(g,h) ß g-lb • N} is a member of the left uniformity of 
and so there is a U0 • L/•($) such that (;b x ;b)(U0) C_ V. Therefore, for 
all U • /g•($) satisfying U C_ U0, we have (q•(xv),qJ(yv)) • V, that is, 
q•(xu)-lq•(yu) E N. Hence q•(xu)-•q•(yu) --4 e. 

Second, suppose that ;b is not uniformly continuous. Then there ex- 
ists a set V in the left uniformity of G such that (;b x ;b)-l(V) •/g•($). 
Therefore, for each U C L/•($) we can choose (xu,yv) • U such that 
(qJ(xu),qJ(yu)) • V. But there is a neighbourhood N of e in G such that 
{(g,h) ß g-Xh • N} C_ V, and it follows that qJ(xv)-xqJ(yv) • N. Hence 
the uniform limit law [x•Xyv --4 e] fails to hold in G under ;b. [] 

Now set T• equal to the set of all uniform limit laws on ($,Lt•($)). 
Our main result on the varieties B(n) is as follows; the proof is immediate 
from Theorems 3.13 and 3.15. 

3.16 Theorem. For every infinite cardinal n, B(n) = Mod(T•). [] 

4. Sequential Laws in AbelJan Topological Groups. 
In this section, we discuss abelian groups exclusively, and it is con- 

venient to think of the individual terms of a limit law as elements of the 
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free abelian group A(X) on the set X of variables involved, since clearly, 
given a variable valuation •b: X -• G, where G is abelian, the extension of 
•b to a homomorphism from F(X) to G may be factored through the nat- 
ural homomorphism from F(X) onto A(X). Despite the abelian context, 
we shall continue to use multiplicative notation, except in specific abelian 
groups whose operations are traditionally written additively. 

We may, as convenient, represent any element w of A(X) either as a 
al ... X• n where the xi are distinct elements of reduced word of the form x• , 

X and the ai are non-zero integers, or as a formal product rIxex xa•, in 
which only finitely many of the integers ax are non-zero. For any variable x, 
the exponent of x in w is the integer ax in the above product. We say that 
x occurs non-trivially in w if a• • 0, and that it occurs trivially otherwise. 
These concepts are obviously well defined. 

We call a limit law a sequential limit law if its index set is the directed 
set of natural numbers N. 

We say that an abelJan topological group G has large powers if there 
exists a neighbourhood U of the identity such that for all g • G and for 
all n • N with n • 0, there is an h • G such that gh n • U. For example, 
if G is divisible and is not indiscrete, then G has large powers, though as 
the following easily proved lemma shows, this sufficient condition is not 
necessary. 

4.1 Lemma. The groups R, Z and T have large powers. [] 

4.2 Lemrna. If an abelian topological group G has large powers and 
[•-• -• e] is a sequential law satisfied in G, then the set of variables occurring 
non-trivially in the •-• is finite. 

Proof. Let X be the countable set of variables which occur in the r•, and 
consider the set of variables in X which occur non-trivially. Suppose that 
this set is infinite, and define a map ½: X -• G by induction, as follows. For 
each n • N, only finitely many variables occur non-trivially in rl,... , 
Let n• < n2 < ... be an infinite sequence defined by the condition that for 
all i, some variable occurs non-trivially in r•, but occurs only trivially in 
all of r•,... , rni_•; such a sequence clearly exists. 

Let U be the neighbourhood of the identity in G given by the large 
powers property. Assign •b(x) arbitrarily for all x occurring non-trivially in 
7'1,... , 7'nl_ 1. If Xl,... , Xk, for some k • 0, are the variables which occur 
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non-trivially in rm but only trivially in all earlier terms of the sequence, 
set (5(xj) - e for j - 1,... , k - 1, and, using the large powers property, set 
•b(xk) ---- h for some h such that •-n• [•b] ½ U (or, strictly, •-nl[•b*] ½ U for an 
arbitrary extension •b* of the so far partially defined ½ to a mapping on all 
of X). Continuing this process, and finally assigning arbitrary values to all 
variables which occur only trivially in the •-•, we obtain ½ defined on all X 
such that rn• ½ U for all i, a contradiction. [] 

We say that an abelian topological group G is sequentially trivial 
if every sequential law [•-• -• e] satisfied in G, where the terms •-• are 
regarded as elements of A(X) for a suitable X, has the property that for 
some N E N, every variable in X occurs trivially in •-• for all n > N; 
that is, •-• is eventually the identity in A(X). The following result is easily 
proved. 

4.3 Proposition. Let G be a topological group. 

(i) If any subgroup of G is sequentially trivial, then so is G. 
(ii) If any continuous homomorphic image of G is sequentially trivial, 

then so is G. [] 

4.4 Theorem. The group Z is sequentially trivial. 

Proof. Fix a sequential law [•-• -• e] satisfied in Z, and let X be the set 
of variables which occur in the •-,•. By Lemmas 4.1 and 4.2, only a finite 
number of variables, say x•,... , xk, occur non-trivially in the •-•. Fix any 
i E {1,..., k). By considering the variable valuation •bi : X -• G which 
maps xi to I • Z and maps all other variables to 0 • Z, we see that we 

i must have a convergent sequence a• -• 0 in Z, where (a/•) is the sequence 
i 0 for of exponents of xi in the •-,•. As Z is discrete, we therefore have a n - 

all n > Ni, for a suitable Ni. Then for all n larger than N•,..., N•, we 
i 0 for i 1,.. k, which is as required. [] have a• = = . , 

Proposition 4.3 now gives the following result. 

4.5 Corollary. Any abelian topological group with a subgroup topologically 
isomorphic to Z is sequentially trivial. [] 

4.6 Corollary. The group R is sequentially trivial. [] 

We wish next to show that the circle group T is sequentially trivial. 
For this we need some preliminary results. 
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4.7 Lemma. Let U be any measurable subset of T with normalised 1- 
dimensional measure A _• 1, let V be any arc in T of measure I• _• 1, and 
let n be a positive integer. Then the measure • of the set {x E V ß x n • U) 
satis1es 1/n) . + 

Proof. For some measurable subset •) of [0, 1), we can express V as (e 2•iø' 
• • •)). Then it is straightforward to verify that 

{x • T x n • U) •-•_2•ij/n ß = •=0 c U•, 
where U• = {e •iø ß n0 • 0•. Now the right hand side above is a union of 
n translates of U•, which respectively lie in the disjoint arcs {e •i(ø+j)/• ß 
O • [0, 1)•, j = 0,... ,n- 1. Hence it is clear that if kin • • • (k + 1)In 
for some integer k • 0, then kA/n • • • (k + 1)A/n, and it follows that 
(•- 1/n)A • • • (• + 1/n)A as required. • 

4.8 Lemma. Let U be an open arc in T of measure A < 1, and let (an) 
be any unbounded sequence of integers. Then the measure of the set M = 
{z•T'z an •Uforalln•N} is zero. 

Proof. The sequence (an) is either unbounded above or below. We assume 
the former (an analogous argument applies in the other case). 

If for each n • N we define Mn = {z E T: z an • U•, then we have 
M - •neN Mn. We shall construct a sequence (nk) such that 
has measure zero, which is clearly suiticient for the result. More specifically, 
fix any c satisfying A • c • 1. Then we shall construct (n•) so that an• ) 0 
for all k, and so that, if v• denotes the measure of •t<• Mn•, we have 
v•+• _• cvk for all k. - 

First, set nx - 1. Next, suppose that for some k, n•,... , n• have been 
chosen so that an• • 0 for 1 = 1,... ,k, and v•+x _• cv• for 1 - 1,... , k- 1. 
We now show how to choose n•+x. Note that for all n, Mn is a finite union 
of (disjoint) open arcs of T, and that therefore so is the set I• - 
Thus we can express Ik as L.Ji Ai, where {Ai} is some finite set of •lisjoint 
open arcs. Let e ) 0 be the smallest measure of any Ai, and choose n•+x 
so that a•+ 1 •_ A/e(c- A). Write the measure of A• as •. Then by 
Lemma 4.7, the measure/•i of {z • Ai: z •+1 • U) satisfies 
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But since Ik is the disjoint union of the Ai, we have •k = •-•-i ai, so •k+l = 
•-•-i •i, and therefore we have •k+l _< c•k, as desired. Hence, by induction, 
a sequence {nk/ exists as asserted. 

It follows that [']ken Mn• has measure zero, and we have the re- 
sult. [] 

4.9 Proposition. Let [x a• -• e] be a sequential law of which the sequence 
of exponents lan) is not eventuallyO. Then the set M = {z ß T ß z • -, 1} 
has measure zero in T. In particular, T satisfies no sequential laws of the 
above kind. 

Proof. Suppose first that the sequence/an/is bounded. If z is an element 
of T of the form e 2•iø for irrational 0, then z • is not eventually equal to 1, 
since z • = I only when an = 0, and the sequence/an) is not eventually 0. 
But the set {z • ß n ß N} is finite, and so we have z • • 1. Therefore M 
contains only z of the form e 2•iø for rational 0, and so is of measure zero. 
(It is easy to see that M is in fact finite.) 

Suppose now that the sequence (an) is unbounded. Let U be any open 
arc in T which contains 1. Then, setting M•v = {z ß T ß z a• ß U for all n > 
N}, we clearly have M c_ UNeN M•v, so it is sufficient if we prove that each 
MN has measure zero. But MN = {z ß T' z b- ß Uforalln ß N}, if we 
define bn = aN+n for all n, and this has measure zero by Lemma 4.8, 
completing the proof. [] 

We can now prove the result mentioned earlier. 

4.10 Theorem. The group T is sequentially trivial. 

Proof. Let [r,• -• e] be any sequential law satisfied in T. By Lemmas 4.1 
and 4.2, the set of variables which occur non-trivially in the r,• is finite. 
We wish to show that, for sufficiently large n, all of these variables occur 
trivially in r,•, so we suppose the opposite, that there is some variable, 
x, say, whose sequence of exponents (an) in the (r•) is not eventually 0. 
But by considering the variable valuations which map all variables in the 
•-•, except possibly x, to the identity 1 in T, we see that Ix • --• e] is a 
sequential law satisfied in T, and this contradicts Proposition 4.9, giving 
the result. [] 
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4.11 Theorem. Every non-totally disconnected, locally compact abelian 
topological group is sequentially trivial. 

Proof. If G is a group of the type mentioned, then G has T as a con- 
tinuous homomorphic image. (The (non-trivial) connected component of 
the identity in G has sufficiently many characters to separate points. One 
character of the component must therefore have non-trivial image in T, 
and this image, being a connected subgroup, must be the whole of T. Fi- 
nally, this character may be extended to a character on G.) Therefore, by 
Theorem 4.10 and Proposition 4.3, G is sequentially trivial. [] 

Some examples show that conditions such as those in the above result 
are needed. The product 1-In zn of the discrete finite cyclic groups satisfies 
the sequential law [x n! -• el, as do the groups of a-adic numbers, denoted 
in [5] by f•a, for any doubly infinite sequence a = (... ,a_•,ao, a•,...) 
of natural numbers greater than 1. The product group is of course com- 
pact and totally disconnected, while the a-adic groups are locally compact, 
non-compact and totally disconnected. (On the other hand, we have al- 
ready noted that the discrete group Z, though locally compact and totally 
disconnected, is sequentially trivial.) 

If we remove the assumption of local compactness, then connected 
abelian topological groups may have non-trivial sequential laws. For ex- 
ample, if we apply to the group Z2 the construction of Hartman and My- 
cielski [4] (cf. [1]), we obtain a connected, simply connected (in fact, con- 
tractible) metrizable group, which is in addition a topological/2-manifold, 
and which satisfies the algebraic law x 2 = e. This group therefore also 
satisfies every sequential law [x a• -• e] in which the sequence of exponents 
(an/ is eventually even. 

15. Further Results and Examples. 
In this section, we discuss a number of results and examples, mostly 

related to the material of Section 3. 

It is convenient for the discussion to define a new family of varieties. 
For any cardinal n, we define S(n) to be the class of topological groups in 
which each neighbourhood of e contains a (not necessarily normal) subgroup 
of index less than n. It is easy to see that S(n) is a wide variety. We also 
denote the wide variety of abelian topological groups by Ab. 
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We investigate the relations between T(n), $(n) and B(n). First, it 
is clear that for all n, we have: 

(1) T(n) C_ S(n) C_ B(n). 
It is plausible that in general the inclusion of T(n) in S(n) is strict, though 
there is at least one exception: 

This follows immediately from the fact ([5], 4.21(d)) that a subgroup of 
finite index n in any (abstract) group contains a subgroup which is normal 
and of index at most n! in the original group. 

We examine the inclusion of S(n) in B(n), showing that there are 
cases where the inclusion is strict and cases where it is not. 

(3) When n equals R0 or R1, we have S(n) • B(n). 
In fact the circle group T is an example of a group which lies in B(n) but 
not in S(n) for both the above values of n. On the other hand, the work 
of [6] yields the following result, in which, for any cardinal •, we denote by 
•+ the cardinal successor of •. 

(4) If n is any cardinal, then B(n +) C_ S((n•ø) +) C- B((n•ø)+). 
In particular: 

(5) If n is such that n = n •ø, then S(n+)= B(n +). 
For any n such that n = n •ø, we therefore clearly have Ab N T(n +) = 
Ab A S(n +) = Ab N B(n +). The results of [6], however allow an extension. 
Let SIN be the wide variety of SIN-groups, or locally invariant groups [12]; 
that is, those groups with arbitrarily small neighbourhoods of e invariant 
under all inner automorphisms. Then from [6] it follows that: 

(6) If n is such that n = n •ø, then SIN • T(n +) = SIN • S(n +) = 
SIN A B(n +). 

Wide varieties generated by single topological groups have been in- 
vestigated in some detail (see [11], for example). We note the following 
easy characterisation of one such variety. 

5.1 Proposition. The wide variety generated by T is Ab • B(R0). 

Proof. Clearly T, and therefore the smallest wide variety containing T, is 
contained in Ab • B(Ro). On the other hand, any group in Ab N B(Ro) is 
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a precompact abelian group, whose completion is compact and therefore a 
subgroup of a suitable product of copies of T. [] 

Of course, by Theorem 3.16, it follows that the wide variety generated 
by T is characterised by a set of limit laws, together with a set of algebraic 
laws defining the abstract variety Ab. 

We have no corresponding simple characterisation of the wide va. riety 
generated by Z (with its usual discrete topology), though we do derive"some 
information about this variety in Proposition 5.4, below. First, however, 
we discuss the wide variety generated by Z with another topology. 

Let ß be a singleton topological space. Then Proposition 3.4 shows 
that FT(•o)(*) is Z with the topology 7' generated by all the subgroups 
nZ, for n - 1, 2, .... We give several characterisations of the wide variety 
generated by this group. Recall from Section 3 that A(R0) denotes a class 
of limit laws defining T(R0). Also, let A denote any (finite) set of al.gebraic 
laws defining Ab. 

5.2 Proposition. The following varieties are equal: 

(i) the wide variety generated by Z with the topology T; 
(ii) the wide variety generated by the discrete finite cyclic groups Z•, 

lorn = 1,2,...; 
(iii) Mod(A O A(R0)); and 
(iv) Ab f• T(Ro). 

Proof. The first and second classes are equal because each group Z• is a 
continuous homomorphic image of (Z, T), and because (Z, T) is embedded 
in I-In>• zn. The third and fourth classes are equal because Mod(•) N 
Mod(f•) = Mod(• U f•), for any classes of (algebraic or limit) laws ß and 
f•. The topological group generating the first class is certainly in the fourth 
class (as noted above, it is a free topological group in T(R0)). Finally, each 
abelian group in T(R0) is, by Proposition 3.1, embedded in the product of 
an indiscrete abelian group with a product of finite abelJan groups, and is 
thus in a product of groups which lie in the second class. [] 

The following result, as well as being of interest in own right, allows us 
to obtain information on the wide variety generated by Z with the discrete 
topology. 
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5.3 Proposition. There is a limit law (on a countably infinite set of vari- 
ables) which is satisfied in Z but not in all countable abelian topological 
groups. 

Proof. Let X be a countably infinite set, and let G be the (abstract) free 
abelian group on X. Let Z) be the set of all finite intersections of kernels 
of homomorphisms from G to Z; equivalently, Z) is the set of all kernels of 
homomorphisms from G to Z n, for all finite n. Clearly, Z) is a directed set 
under the superset relation. For each d E Z), select an arbitrary non-zero 
wd Ed. Then the law [wd -• e] is satisfied in Z. For if•b ß X -• Z is a 
variable valuation, then •b extends uniquely to a homomorphism (I) ß G -• Z; 
if we write K - ker •b, then K • Z), and it is easy to see that for any d • Z) 
which is greater than or equal to K in the ordering of Z), we have wa [•b] = 0 
in Z. 

On the other hand, by construction, the law [wa -• e] is clearly not 
satisfied in the (countable abelian) group G equipped with the discrete 
topology, and the result is proved. [] 

5.4 Proposition. Let .Z denote the wide variety generated by Z with the 
discrete topology. Then AbNT(R0) C_ Z _C AbNT(R•), and both inclusions 
are proper. 

Proof. The first inclusion follows from Proposition 5.2, since Z with the 
topology T is a continuous image of Z with the discrete topology. The 
second inclusion is clear. The first inclusion is proper since Z with the 
discrete topology is clearly not in T(R0). The second inclusion is proper 
by Proposition 5.3, and since Ab f• T(R•) contains all countable abelian 
topological groups. [] 

Finally, we prove two results of a miscellaneous nature. In the first of 
these, we again continue to use multiplicative notation despite the abelian 
context. 

5.5 Proposition. Let B denote the wide variety generated by those abelian 
topological groups G for which there is an n = nG • N such that g'• - e 
for every g • G. Then/• - Mod(A U {[x• ! -• e]}). 

Proof. It is clear that B c_ Mod(A U {[x• ! -• el}). Conversely, if G • B, 
then by Proposition 3.1, either (i) G• • B, or (ii) there is a neighbourhood 
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N of e in G such that for all (normal) subgroups H of G lying in N, we 
have G/H • B. However it is easy to see that B contains all indiscrete 
abelian groups, so (i) is impossible, and (ii) therefore holds. Now for each 
n E N, G '• is a (normal) subgroup of G, and clearly GIG '• • B. Hence, for 
the neighbourhood N of e given by (ii), we have G n • N, for each n. In 

n ! particular, we can find a sequence {g,•/of elements of G such that g,•' ½ N 
for all n. Therefore the sequence {g•!/ does not converge to e, and so the 
law [x• ! • e] does not hold in G. This proves the reverse inclusion. [] 

In the last result, we examine a particularly simple limit law, and find 
the wide variety it generates. 

5.6 Proposition. The sequential limit law [x '• --• e] is satisfied by and 
only by the indiscrete ( abelian or non-abelian) topological groups. 

Proof. Suppose that G is a non-trivial Hausdorff group satisfying the law. 
Now for any element a • e in G, the sequence (a'•/converges to e. There- 
fore, by left-translation, a n+• -• a, and it follows that the sequence (a s) 
converges both to e and to a, a contradiction, since G is Hausdorff. Thus 
the law is satisfied by no non-trivial Hausdorff group. But if the law is 
satisfied by any non-trivial non-indiscrete group G, then it is also satisfied 
in the non-trivial Hausdorff group obtained from G by taking the quotient 
with respect to the closure of {e} in G, and we have shown that this is 
impossible. The result follows. [] 
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