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1. Introduction

An open subgroup U of a topological group G is always closed, since U is the
complement of the open set U{Ug\g£U}. An arbitrary closed subgroup C of 0 is
almost never open, unless 0 belongs to a small family of exceptional groups. In fact,
if 0 is a locally compact abelian group in which every non-trivial subgroup is open,
then G is the additive group Ap of p-adic integers or the additive group Qp of p-adic
rationals (cf. Robertson and Schreiber[5], proposition 7). The fact that Ap has
interesting properties as a topological group has many roots. One is that its character
group is the Priifer group Zp™, which makes it unique inside the category of compact
abelian groups. But even within the bigger class of not necessarily abelian compact
groups the y-adic group Ap is distinguished: it is the only one all of whose non-trivial
subgroups are isomorphic (cf. Morris and 0ates-Williams[2]), and it is also the only
one all of whose non-trivial closed subgroups have finite index (cf. Morris, Oates-
Williams and Thompson [3]).

If one abandons not only the requirement of commutativity, but also that of
compactness — staying, however, within the realm of local compactness — then the
situation deteriorates dramatically. We shall show here that some rather monstrous
locally compact groups exist. In fact, for any sufficiently large prime p we shall
produce a locally compact torsion-free group Jt with dense algebraic commutator
group such that each non-trivial proper closed subgroup of Jt is open and isomorphic
to Ap. There will be a centre 2£ which is one of these subgroups, containing all proper
closed normal subgroups.

We shall obtain the group Jt as a highly non-trivial central extension of a ^-adic
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group Aj, by the Ivanov-Ol'shanskii monster, a simple group with p conjugacy
classes in which all proper non-trivial subgroups have order p (see [1]). This will
illustrate how badly the methods of Morris, Oates-Williams and Thompson in
characterizing Ap through topological group properties must fail in the absence of
compactness, because their focus was on the factor group of G modulo the centre
Z[G). This factor group turned out to be finite with all proper subgroups cyclic. For
sufficiently large exponent, the Ivanov-Ol'shanskii group will be an unsurmountable
obstruction, and our construction shows that this will not be any different in the
structure theory of locally compact groups.

2. Construction of certain central extensions

Let G be a topological group and Z a topological abelian group. We make the
following definitions.

Definition 21 . (1) A group G is a central extension of G by Z if G is a topological
group containing a central subgroup Z isomorphic (as a topological group) to Z such
that G/Z = G. This implies, in particular, that there is an exact sequence of
topological groups

i Q

1 Z G G

and if we add the information that j is an embedding and q a quotient morphism this
is an equivalent formulation of the definition.

(2) G is a centrally compact extension of G by Z if it is a central extension with a
compact abelian group Z.

[Note that our definition of central extension differs from that used by some
people.]

Central extensions are easy to come by. The group G = ZxG will always be a
central extension of G by Z, but this is the one from which one expects the least
information. Therefore it is called trivial.

There is an easy way of constructing centrally compact extensions once simple
central extensions are given. The new ones will not be trivial if the given ones are not.

LEMMA 2-2. Suppose that F is a topological group with a closed central subgroup Z.
Let a: Z->C be a morphism of Z into an additively written compact abelian group. Let
A = {(-a(z),z)eCxV:zeZ} and set

r * *(Z) x F
W "~A~' ^~~A~- A ' r = ^ A —

Then

def

(i) G is a centrally compact extension of G = V/Z by C.
(ii) cr: F->•€!, o~(g) = (O,g)A is a morphism with image F* and kernel ker a.

(iii) G = CT* and C 0 F* S im a.
(iv) / / the image of a is dense in C, then F* is dense in G.
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Proof, (i) The subgroup A is essentially the graph of the morphism — a: Z^-C in
the closed subgroup C x Z of C x F and is therefore closed in C x F, and it is clearly
central. Hence G = Cx F/A is a Hausdorff topological group.

We note (c, 2) e (C x {1} f| A if and only if z = 1 and c = — a(z) if and only if (c, z) =
(0,1). Hence the map a->(c, 1): C^C is an isomorphism of compact groups. Also,

(ii) The map a is a well-defined morphism with image

({0}xF)A g(Z) x F
A A •

We note 1 = a(g) = (0, g) A if and only if (0, g) e A if and only if (0, g) = (— a(z), z) for
some zeZ and this is the case if and only if (jrekera.

(iii) It is clear that G = CT*. The intersection C 0 F* is (CxZ) (1 (a(Z) x F) =
a(Z) x Z modulo A. From the proof of (i) we recall (a(Z)x{l}) (] A = {(0,1)} and note

n {l}) n A)

Thus C fl F* ̂  ima as asserted.
(iv) From the definition of F* we know

. If C = W), then G =

It is useful to have some notation.

Notation 2-3. The group G constructed from F, a and C as in Lemma 2-2 will
be denoted by F[a] and qa will denote the morphism from F[a] to G which takes
{c,g)A to gZ.

Note that qa is a quotient morphism with kernel C.

Remark 2-4. Suppose that H is a closed subgroup of F[a]. Then

(i) qa(H) is closed in G.
(ii) // fl C is a closed central subgroup of C = C such that qa{H) = H/H n C.

In other words, H is a centrally compact extension of qjfl) ^ G by / / fl C.

Proof, (i) The subgroup (7 of F[a] is central and compact. Hence HC is a closed
subgroup containing H. But //C" = g^1 ?„(#)• Since ga is a quotient morphism, <7a(-#)
is closed in G.

(ii) The injective continuous morphism h(H 0 C)^-hC: H/H f] C-+HC/C is
an isomorphism because H [) C is compact. Since qa(H) s HC'/C the assertion
follows. I

The most interesting special case which we shall consider in the sequel is that for
which a is injective and the image of a is dense in C. In other words, C is a
compactification of Z.
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3. An algebraic construction of a central extension

In this section we are dealing with (discrete) groups only. Suppose that a group G
is given and that we have a free resolution

with N normal inF(X). By Schreier's Theorem, N is free. Note thatiV= {1} if and only
if q is an isomorphism. The group [N,F(X)] is normal in F(X) and contained in N. If
neN and ksF(X), then knk~len[N,F(X)], that is, the inner automorphisms of F(X)
induce the identity onN/[N,F(X)]. As a consequence, if [N,F(X)] ^K ^N, thenK is
normal in F(X).

Now we make the following hypothesis:

Hypothesis (*). There is a free resolution of G such tha,t N/[N,F(X)] has a quotient
isomorphic to Z.

This is the case in particular if N/[N, F(X)] is free abelian.

If (*) is satisfied, then there is a morphism/: N->Z, such that/is constant on the
conjugacy classes under inner automorphisms of F(X).

Now we set G = F(X)/K and Z = N/K where K = ker/. Then

We summarize:

PROPOSITION 31. / /

is a free resolution of a group G satisfying Hypothesis (*), then there is a central extension

N N/K Z

and maps f: F(Y) -*• Z, (f>:F(X)-> G such that there is a commutative diagram with exact
rows and columns:

1 1

K- id
•+K

*F(Y) 3-—>F(X)
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We record some information about the commutator group G'.

LEMMA 3-2. Under the hypotheses of 2 1 :

and G/(G'Z) * O/O'.

(ii) / / G is perfect, that is, equals its own commutator group G', then

G & Z
x& n zG' n zx& n z

Proof, (i) We note
x, F'{X)K
G = ~ ^ -

Hence

Also
~ ~ ~ G/Z
G/IG'Z) s -¥l—^ ^ G/G'.n ' (G'Z)/Z '

(ii) If G is perfect, then (i) implies that G = G'Z. Thus, by the Second Isomorphism
Theorem,

G G' Z

G oz G' n z
I

Due to a construction of Ivanov, using techniques of Ol'shanskii, there is a
monstrous group M of exponent p whose properties are described in the following
theorem:

THEOREM 3-3. For any sufficiently large prime p, there is a group M with the following
properties:

(i) Every proper non-trivial subgroup of M has order p.
(ii) There are p conjugacy classes.

Proof. See [1]. I

The following properties of the Ivanov-Ol'shanskii monster are consequences.

LEMMA 3'4. The group M also has the following properties:

(iii) Let Q s J f denote the group of inner automorphisms. Take 1 =t= geM and let
£lg = N(g,M) (the centralizer of g in M) denote the stabilizer of Q at g. Then for each
k= l,...,p—l, the function (i)Q.\-^o)(gk):Q./Q.g^-Q.(gk), is a bijection onto each of the
p—\ non-trivial conjugacy classes.

(iv) M is simple.

Proof, (iii) The elements g,g2,... ,gp~l are in different conjugacy classes, and
Q(gk) = {hk: heQ(g)}. Two different cyclic subgroups of order p intersect in {1}.
Hence for ke{l,...,p—l} the function £h>a;*:M-*M is a bijection permutating the
conjugacy classes and mapping one conjugacy class Q-equivariantly onto its
image. In particular. Q.g = Q.gk. Assertion (iii) follows from these facts.
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(iv) Suppose tha t 1 =t= g is an element of a normal subgroup N ofM. Then gk eN for
k = l,...,p— 1. Since N is normal, Q{gk) ^N for A; = 1,... ,p— 1. Then (iii) implies

LEMMA 3-5. TAe group M has a free resolution satisfying Hypothesis (*).

Proof. From the proof of theorem 41-2 of [4] we see that the group M is defined by
its presentation:

M=(a1a2\R=l;ReM'), (1)

that is, as a quotient of the free group on two generators. To obtain an aspherical
presentation of M we have to replace the set of relators 01 by a smaller set, ^2\^2,,
where ^ contains all relators of the first type of the form Af, where At 4= alt and
of the second type of rank i ^ 2 of the form Si_ltiAflSj}li{A^, where 2 ^ m < p.
Every defining relation R = 1, where Re^ follows from the set of defining relations
{R = 1; Re£%\!%}, so the group M can also be defined by the presentation

M=(a1,a2\R = l;i?e<%\^>. (2)

Let J^(Z) = -F({a1; aj) . Consider the central extension L = F(X)/[F(X),N]. The proof
of [4], theorem 41-2, shows that the presentation (2) of M is aspherical, and it follows
from [4], theorem 31-1, that the groupN = N/[F,N] is a free abelian group with basis
{R\Re@\@1}, where R = R[F(X),N]. Thus M has a free resolution satisfying
Hypothesis (*).

Now we construct M as a central extension of M by Z as in Proposition 3-1 and
obtain / : F(Y) -> Z and 0: JP(X) -»-J/ as in Proposition 31.

PROPOSITION 3-6. For any sufficiently large prime p there is a group M with the
following properties:

(i) The centre Z = Z(M) of M is isomorphic to Z.
(ii) M/Z^M.

(iii) The group Q of inner automorphisms ofM alloivs a homomorphism 6 onto Q. such
that the quotient map q.M-^-M is equivariant in the sense that q(ifr(m)) = d(i]r) (q(m))for
i/reCl,ni eM. An inner automorphism ijr ofM implemented by an element m eM is in the
kernel of 6 if and only if [m,h]eZ for all heM {with [m,h] = mhm~l h'1).

(iv) If S is any non-trivial cyclic subgroup, then SZ is cyclic. Either S is contained in
Z or S is a subgroup of SZ with an index which is relatively prime to p. In particular,
M is torsion free.

Proof, (i) and (ii) are direct consequences of Proposition 3-1.
(iii) limeM, let Im(m') = mm'm'1. Let q:M-*M denote the quotient morphism.

Then Ig{m){q{m)) = q{Im(m')). The map Im^Ig(m): Q-s-Q is a surjective morphism,
and Ig(m) = id if and only if mhmT1 h~l e Z for all h eM.

(iv) Ity the construction in Lemma 3-5, we see that af is a free generator of the free
abelian group N/[F(X),N]. We can thus find a normal subgroup iv of F(X) such that
[N,F(X)) ̂ K^N, N/K ^ Z and afK is a generator of N/K. Set g = q^)eM and
g0 = (pia^eM. Let meM, m =t= 1. Then by Lemma 3-4(iii) we find an weD and a
ke{l,... ,p— 1} such that q(m) = (o(gk). By (iii) above there is a xj/eCl such that
6(i/r) = (o. Then q{i/r(g$)) = w(gk) = q(m). Thus m = ft(gk)z with a zeZ. Now avK is a
generator of Z by the choice of a1eF(X). Thus g% = afK is a generator c of Z. There
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is an integer r such that z = cr and we have mv = fr(g%)lczp = c" crp = ck+rp with a
suitable integer r. Suppose mv = 1. Then k+pr = 0. Thusp | k. Since ke{l,... ,p — 1}
this is impossible. Hence mv 4= 1 in the infinite cyclic group Z, and thus m is not a
torsion element. Thus M is torsion free. Let S be the cyclic group generated by m.
Since TO 4= 1 we have S $ Z, that is, Z n S 4= S. Now Z«5 is a group containing .Z in
its centre such that ZS/Z is cyclic of order p. Thus ZS is abelian and generated by
at most two generators. By the structure theorem of finitely generated abelian
groups, either ZS is infinite cyclic or isomorphic to Z © Z( with I =t= 0. This is
impossible since M is torsion free. Thus ZS is cyclic.

The group ZS/(Z n S) is finite cyclic. If its order is p, then Z f] S = Z and thus
Z £ £. If not, then ZS/(Z fl $) is a direct sum of two cyclic subgroups, one of which
is isomorphic to Z(p). The other one is isomorphic to Zt s Z/(Z D S) = ZS/S, and
since the whole group is cyclic, (l,p) = 1 follows.

LEMMA 3-7. Suppose that a group G contains a central subgroup A such that G = G'A.
Then G' is perfect.

Proof. Let g'eG'. Then by the definition of the commutator group, there are
elements gphjEG, j = 1,.. . ,n such that g' = [g1>h1] ••• [j/B,An]. Since G = G'A there
are elements g'p h'^eG' and ap b^eA such that g} = g'^a^ and h^ = h'^by Now [gph^\ =
[g'^aphjbj] = [g'ph'j] since a;- and 63- are central. Thus g' = [g'^h'^] ••• [g'n,h'n]eG".

PROPOSITION 3-8. For any sufficiently large prime p there is a group M with the
properties (i)-(iv) of Proposition 3-6 and the following properties:

(v) The group M is perfect, that is M' = M.
(vi) Any proper normal subgroup of M is contained in Z.

(vii) Any non-trivial proper subgroup S is infinite cyclic and either is contained in Z
or Z^S or SZ is cyclic with (\SZ/S\,p) = 1.

Proof. We begin by denoting by Ml a central extension of M by the subgroups
Z j ^ Z having the properties (i)-(iv) of Proposition 3-6. Then M'XZJZX is a normal
subgroup of the simple group M'1/Z1 = M. Hence there are two cases: M[ £ Zx or
M\ Z\ = M1. The first case is impossible sinceM1/Z1 ^Mis not abelian. As a subgroup

__ def

of Mu the group M = M\ is torsion free. By Lemma 3-7, the group M is perfect. We
set Z=M\(\Zi. Thenilf/Z ^M'1ZJZl =MJZ1 s i . This implies Z * {0} sinceM
is torsion free. As Z is a non-zero subgroup of an infinite cyclic group, it is itself
isomorphic to Z. Since Zx is the centre o£Mx, then Z = Zx f~l M[ is the centre of M =
M\. Thus M and Z have the properties recorded in (i)-(iv) of Proposition 3-6, and (v)
is satisfied.

(vi) Let H denote a normal subgroup of M. Then HZ/Z is a normal subgroup of
M/Z. But M s M/Z is simple. Thus either H <= Z or HZ=M. In the latter case
M/H = HZ/H = Z/(H (1 Z) is abelian. Hence H contains the commutator subgroup
W, which is M by (v). Thus H=M.

(vii) Let H be a non-trivial proper subgroup of M. By (ii) HZ/Z is trivial or cyclic
of order p or equals M/Z. In the first case H ^ Z and H is infinite cyclic.

In the second case, HZ is an abelian group of at most two generators in a torsion
free group, hence is isomorphic to Z or Z2. The second case does not allow a finite
cyclic quotient by factoring a cyclic group. Hence H is cyclic.
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If HZ = M, then H is normal in M and the quotient group M/H — HZ/Z is
isomorphic to Z/(H 0 Z). The possibility H D Z = {1} is ruled out since this
would imply M = Z x l which we have already ruled out as M is torsion free. Thus
H f| Z #= {1} and so H 0 Z has finite index in Z = Z, and thus / / has finite index in
ilf. Since H is normal in M, by (vi) we have H = M.

4. Monothetic and p-adic monsters

Now we consider our modified monster M of Proposition 3-8 as a discrete, hence
locally compact topological group and apply Lemma 2-2 with Y = M. If we assume
that M is as in Proposition 3-8 then the centre Z is infinite cyclic. We select any
monothetic compact group C as well as an appropriate morphism a: Z -> C with dense
image. In the category of locally compact abelian groups, a is an epimorphism, and
if C is not finite, then a is a monomorphism. We recall that a : ( 7 ^ Z ^ T , T = IR/Z
is a monomorphism (with a dense image unless C is finite) and that every subgroup
of IFS/Z via duality gives rise to a monothetic group and a morphism a: Z-* C. Special
cases of monothetic groups are: (i) any compact connected group of weight not
exceeding that of the continuum, (ii) the additive group of p-adic integers, (iii) the
universal monothetic group C = Td, where Td is the circle group with its discrete
topology and a: Z-+G is the adjoint of the identity morphism id: Tp^-T.

LEMMA 4-1. Suppose that A is a compact monothetic group with an open subgroup B
such that A/B £Z(j>). Then A may be identified with a subgroup of Td in such a way
that Bx £ A is the unique subgroup 1/pZ/Z of order p in T = IR/Z and that A/Bl

is isomorphic to the character group B of B.

Proof. These statements contain standard information on monothetic compact
groups and duality.

Definition 4.2. We shall say that a group of the type of A in Lemma 4-1 is a
monothetic ^-extension of B.

Now we set Ji =M[a] (see Notation 2-3).

THEOREM 4-3. Let oc: Z^-C be any morphism of the discrete infinite cyclic centre Z of
M into a compact group with C = a(Z). Then the locally compact group Jl = M[a] has
the following properties:

(i) The centre 2£ of d( is open and isomorphic to G.
(ii) The quotient group Jt/2£ is the Ivanov—OVshanskii monster.

(iii) Every element of Ji is contained in a monothetic subgroup A which contains 3£
and either equals !% or else is a monothetic p-extension of 3C'.

(iv) Any closed proper normal subgroup Jti? is contained in i2f'. In particular, the
(algebraic) commutator subgroup is dense in Jl'.

(v) If 2^ is a proper closed subgroup of Jl, then either 2? <=, 2£ or $f2£ is a monothetic
p-extension of 2£.

Proof. By Lemma 2-2 we know that 2£ is central in Jl and Jl 1^ = M/Z. The group
M and thus the factor group M/Z is discrete. Hence 2£ is open. By Propositions 3-6
and 3-8 we have M/Z =M, and by Lemma 3-4(iv), the Ivanov-Ol'shanskii monster
M is simple. In particular, the centre of M is trivial and thus the centre of Jl is
contained in 2t and therefore equals !%'. Thus (i) and (ii) are proved.
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(iii) Let meJt = Cxilf/A,ra = (c,m) A. By Proposition 3-8(vii) there is a cyclic
subgroup T ^M containing Z and m. We set A = ({0} x T) A/A and note that in view
of Z c T we have A = a(Z) x T/A = Cx T/A. By definition, A is monothetic and
contains m as well as 2t'. By (ii) and 3-3 (i) we either have A = 2£ or else A/2£ = Z(p).

(iv) If J^ £ ^ we are finished. Since 2tf2£ /2£ is a normal subgroup of the simple
group Jt/SZ^M the remaining case is 3tf2£ = Jt. Then Jt/'jf= 3^S'/'Jf'^
^7(.2f n Jf) is abelian, whence . / / ' c jf. Now let itf* = ({0} x M) A/A denote the
algebraic copy of M in ,/// according to 2-2(ii). Then (M*)' = M* by 3-8(v). Hence
M* = (J¥*)' £ . / / ' £ Jf. Since ilf * is dense in ^# by 2-2 (iv), we obtain Jf = Jt con-
tradicting the assumption that Jf is a proper subgroup.

(v) Assume that Jf $ 2£. Then #e2£/2£ is of order p or equals Jt/2£ ^Mby 3-3(i).
Assume the former. Then Jf ^ n -M* is a proper subgroup of M* containing Z*.
Hence 3-8 (vii) applies and shows that #P2£ |~l M* is cyclic. Since 2tf2£ is open in Jt
andilf * is dense in Jt it follows that #P2!! is monothetic. Then #f2£ is a monothetic p-
extension. Now suppose that #C2£ = Jl. Then, since 2£ is central in Jt', the subgroup
Jf is normal in Jt. Then section (iv) applies and shows that ^f <=, S£', which implies

= £? 4= Jt, a contradiction. I

Let us make some observations on monothetic compact groups which are relevant
in our context. We understand monothetic ^-extensions in the same measure as we
understand the subgroups^ of 1R/Z containing 1/pZ/Z. We recall that IR/Z has the
(fully characteristic) torsion group which, in turn, contains the (fully characteristic)
p-Sylow subgroup Zp» = 1/JO°°Z/Z (with l/p°°Z = {m/pn: m,neZ}) which contains
the (fully characteristic) subgroup 1/pZ/Z. The group Jd itself is a direct sum of the
(uniquely determined) direct summands Zg», q ranging through the set of all primes,
and a (not uniquely determined) direct summand isomorphic to Rd.

The closed subgroups K of any monothetic group A are fully classified by the sub-
groups KL of A. The character group of K may be identified with A/K1. We note
in passing that in general we find closed subgroups K which are not monothetic: take
A = Jd = Q/Z © ®xeX Q • ex with a free family {ex: xeX} of continuum cardinality,
and set K1 = {0}© ®xeXZ-ex. Then K s A/K1 ^ Q/Z © (Q/Z)(X\ and thus

K ^ ( n &p)
x which is vastly non-monothetic.

pprime

Also, the question whether a closed subgroup if of a monothetic group A meets the
subgroup ot(Z) of A is clarified via duality: if K £ A we set P = a~l{K) £ Z. Then
<x(P) = oc(Z) fl K. Thus we need to find P. Either P is infinite cyclic or P is zero. The
adjoint of the inclusion j : P -*• Z is a quotient morphism j : T ->• P which either has
finite kernel or is constant (with P a singleton). An inspection of the dual situation
reveals that kerj = diK1). We recall that a has a dense image so that a is injective,
whence oc(Kx) is finite if and only if KL is finite. Therefore:

Remark. If K is a closed subgroup of the monothetic group A with injective
defining morphism a: Z-*A, then the intersection cc(Z) f] K is non-trivial (that is,
infinite cyclic) if and only if KL is finite if and only if A/K is finite.

In particular, if A = Ap is the p-adic group and thus the character group of Zp»,
and if a = ap: Z -> Ap is the embedding of Z, then im a meets every non-trivial closed
subgroup non-trivially. The p-adic groups are the only infinite monothetic groups
with this property. I



312 KARL H. HOFMANN AND OTHERS

If A is a monothetic p-extension of 5 we note that, as a consequence of some of our
observations, ifA/B1 is ap-group, then A is itself a p-group. As aspecial consequence
we have:

LEMMA 4-4. A monothetic p-extension of a p-adic group (i.e. a group isomorphic to Ap)
is a p-adic group.

We have made reference to the additive group Ap of p-adic integers. We let
ap: Z->Ap denote the standard morphism. Depending on one's preference of rep-
resenting Ap, the function ocp is the inclusion if Ap is the completion with respect to
the p-adic metric. We note that we may write the elements of Ap in their p-adic
expansion 2J^L0 a n p" with ane{0,...,p— 1}; the elements of Z then are exactly
the ones whose expansion is polynomial. If, on the other hand, we use the inverse
limit representation Ap = lim<_Z/p"Z, then ocp(z) = (z+pnZ)neN. If, finally, one
wants to consider Ap as the character group of ZPta, then otp: Z-> Aj, is the adjoint
morphism of the inclusion Zpoo->-T.

Now we specialize Theorem 4-3 to the case that C is the additive group Ap of p-adic
integers.

Recalling that Z denotes the infinite cyclic centre of M, we let j : Z -»- Z denote one
of the two possible isomorphisms and set

a:Z->Ap, a = ocpoj: Z^-Z—>Ap.

We obtain Jt =M[a], a locally compact monster group whose bizarre properties,
of course, result, in the final evaluation, from those of the Ivanov-Ol'shanskiT
monster.

THEOREM 4-5. There is a locally compact group Jt with the following properties:

(i) The centre 3? of Jt is open and isomorphic to Ap.
(ii) The quotient group Jt'/'2£ is the Ivanov-OVshanskii monster.

(iii) Every element of Jt is contained in a subgroup which contains 2£ and is
isomorphic to Ap. In particular, Jt is torsion free.

(iv) Any closed proper normal subgroup J&* is contained in 2t'. In particular, the
(algebraic) commutator subgroup is dense in Jt.

(v) If J^C is a proper closed subgroup of Jt, then #C ̂  Ap. Either 2/f £ 3C or 2£ cr j f
in which case the index is p .

Proof. By construction, 3£ = Ap is p-adic. Hence every monothetic p-extension of
2£ is p-adic by Lemma 4-4. Assertions (i), (ii), (iii) and (iv) now follow from the
corresponding assertions in Theorem 4-3.

(v) From 4-3 (v) we know that either Jf c J o r else that Jf .2? is a monothetic p-
extension of H£ = Ap. Suppose Jf % Z. By Lemma 4-4 we have JPSS s Ap. But the
closed subgroups of Ap are totally ordered under inclusion. Hence we must have

Thus we have achieved our aim of constructing a non-abelian topological group in
which every proper non-trivial closed subgroup is open and isomorphic (to Â ,) so this
one example suffices to show that the conditions in [2] and [3] cannot be weakened.
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