Generators on the arc component of compact connected groups

By KARL H. HOFMANN

Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstr. 7, D-6100 Darmstadt, Germany

AND SIDNEY A. MORRIS

Faculty of Informatics, University of Wollongong, Wollongong, NSW 2522, Australia

(Received 6 July 1992)

Introduction

It is well-known that a compact connected abelian group G has weight w(G) less than or equal to the cardinality c of the continuum if and only if it is monothetic; that is, if and only if it can be topologically generated by one element. Hofmann and Morris[2] extended this by showing that a compact connected (not necessarily abelian) group can be topologically generated by two elements if and only if $w(G) \leq c$.

In any compact connected group G, the arc component of the identity plays a special role, since it is the union of the one-parameter subgroups of G. The second author asked whether it is always possible to choose a minimal set of topological generators of G from within the arc component of G. We shall prove here that this is possible.

In Hofmann and Morris [2] it is shown that for $w(G) > \mathfrak{c}$, the compact connected group G is not topologically generated by any finite set. In this case we look for topological generating sets which are, in some sense, 'thin'. A subset X of G is called suitable if it topologically generates G, is discrete and is closed in $G \setminus \{1\}$, where 1 is the identity of G. If X has the smallest cardinality of any suitable subset of G then G is called a special subset and its cardinality is denoted by s(G). In [2] it was proved that if G is a connected locally compact group with $w(G) > \mathfrak{c}$, then $s(G)^{\aleph_0} = w(G)^{\aleph_0}$. It is proved here that if G is a compact connected group, then the arc component of G contains a special subset of G. As a corollary of this we deduce that the arc component of a connected locally compact group G with $w(G) > \mathfrak{c}$ contains a special subset of G.

The principal result

If G is a topological group and X is a subset we shall write $\langle\!\langle X \rangle\!\rangle$ for the smallest closed subgroup containing X.

We recall some definitions from [2].

Definition 1. (i) A subset X of a topological group G is called suitable if it is discrete, contained and closed in $G \setminus \{1\}$, and $G = \langle X \rangle$.

(ii) If G contains suitable subsets, then we set

KARL H. HOFMANN AND SIDNEY A. MORRIS

 $s(G) = \min \{ \operatorname{card} X : X \text{ is a suitable subset of } G \}$

and call this cardinal the generating rank of G.

(iii) A subset X of G is called special if it is suitable and card X = s(G).

We showed in [2] (theorem 1.12) that all locally compact groups contain suitable sets. In particular, for all locally compact groups, the generating rank is defined. Note that $s(G) \leq w(G)$ always. In [3] (corollary 2.16), for each infinite cardinal \aleph_{ν} with $\aleph_{\nu} < \aleph_{\nu}^{\aleph_{0}}$ we gave an example of a compact connected group G_{ν} such that $s(G) \leq \aleph_{\nu}$ and $w(G) = \aleph_{\nu}^{\aleph_{0}}$. In [2] (theorems 4.13 and 4.14) we proved that for a compact connected group G with $w(G) \leq \mathfrak{c}$ we have

 $s(G) = \begin{cases} 0 & \text{if } G \text{ is singleton,} \\ 1 & \text{if } G \text{ is abelian and non-singleton,} \\ 2 & \text{if } G \text{ is non-abelian.} \end{cases}$

If $w(G) > \mathfrak{c}$ then $s(G)^{\aleph_0} = w(G)^{\aleph_0}$.

The arc component of the identity of G will be denoted G_a . The principal result of this paper is the following:

THEOREM 2. Let G be a compact connected group. Then there is a special subset X of G which is contained in G_a .

Several lemmas

The proof of Theorem 2 will proceed through several reductions. Until further notice, G will always denote a compact connected group.

LEMMA 3. Assume that Theorem 2 is true for all abelian groups G. Then Theorem 2 is true in general.

Proof. Let G be a compact connected non-abelian group and T a maximal protorus. (See proposition 2.4 of [2], where a maximal protorus is defined to be a maximal connected abelian subgroup of G and shown always to exist.) By hypothesis, we can find a special subset X in T_a . By corollary 2.5 of [2], there is a $g \in G$ such that $G = \langle X \cup \{g\} \rangle$. Since G is the union of the conjugates of T (see [2], proposition 2.4 (ii)), there is an $h \in G$ such that $g \in hTh^{-1}$. Clearly G is topologically generated by $T \cup hTh^{-1}$. Hence $G = \langle Y \rangle$ with $Y = X \cup hXh^{-1}$. Since X satisfies (i) and (iii) of Definition 1, the same is true for Y. Also, $Y \subseteq T_a \cup hT_a h^{-1} \subseteq G_a$. If $\aleph_0 \leq w(G) \leq c$, then card X = 1 and thus, since G is not abelian, card Y = 2 = s(G) and so Y is special. If $\mathfrak{c} < w(G)$, then card $Y = \operatorname{card} X = s(G)$, and hence Y is special. This completes the proof of the Lemma.

After Lemma 3 the task is reduced to the abelian case.

LEMMA 4. Theorem 2 is true for all abelian G with $w(G) \leq c$.

Proof. By Lemma 3, is suffices to show that each connected monothetic G has a generator in G_a . Now the hypothesis that G is connected monothetic means that \hat{G}

480

is torsion free and of rank $\leq c$. Let \mathbb{T} denote \mathbb{R}/\mathbb{Z} and $p:\mathbb{R}\to\mathbb{T}$ the quotient homomorphism. The group \mathbb{T} is algebraically isomorphic to $\mathbb{Q}/\mathbb{Z}\oplus\mathbb{R}$. Hence there is an injective morphism, $j:\hat{G}\to\mathbb{R}$ such that $p\circ j:\hat{G}\to\mathbb{T}$ remains injective. Hence the dual $\hat{j}\circ\hat{p}:\mathbb{Z}\to G=\hat{G}$ has dense image and factors through $\hat{p}:\mathbb{Z}\to\mathbb{R}$. Thus $\hat{j}\hat{p}(1)$ is a generator on the arc component of the identity.

Now the only remaining case is: G is abelian and $w(G) > \mathfrak{c}$; that is, \hat{G} is torsion free of rank $> \mathfrak{c}$.

LEMMA 5. Let X be a suitable subset of a topological group H such that $X \cup \{1\}$ is compact. Assume that $f: H \to K$ is a morphism of topological groups with dense image. Then $f(X) \setminus \{1\}$ is a suitable subset of K. If X is special and if $s(H) \leq s(K)$ then $f(X) \setminus \{1\}$ is special.

Proof. Since X is discrete and closed in $G \setminus \{1\}$, and since $X \cup \{1\}$ is compact, then for every identity neighbourhood U in H the set $X \setminus U$ is finite. Now assume that V is an identity neighbourhood of K. Then $X \setminus f^{-1}(V)$ is finite. Since $h \in f(X) \setminus V$ implies h = f(x) with $x \in X \setminus f^{-1}(V)$, then $f(X) \setminus V$ is finite. Thus $f(X) \setminus \{1\}$ is discrete and $f(X \cup \{1\}) = f(X) \cup \{1\}$ is compact. Hence $f(X) \setminus \{1\}$ is closed. Also

$$K = \overline{f(H)} = \overline{f(\langle\!\langle X \rangle\!\rangle)} \subseteq \overline{\langle\!\langle f(X) \rangle\!\rangle} = \langle\!\langle f(X) \rangle\!\rangle.$$

So $f(X)\setminus\{1\}$ is a suitable subset of K. Finally, card $(f(X)\setminus\{1\}) \leq \text{card } X = s(H)$, whence $s(K) \leq \text{card } (f(X)\setminus\{1\}) \leq s(H)$. Thus $f(X)\setminus\{1\}$ is special if $s(H) \leq s(K)$.

Before we proceed with the next lemma we recall that each locally compact abelian group H has an exponential function $\exp: L(H) \to H$ such that $L(G) = \operatorname{Hom}(\mathbb{R}, G)$, $\exp X = X(1)$, and $G_a = \exp L(G)$. (For further comments, see [1], remark 2.2.2.) We give L(G) the topology of uniform convergence on compact sets. Note that we have an isomorphism $\alpha: L(G) \to \operatorname{Hom}(\hat{G}, \mathbb{R}), \ \alpha(f) = \hat{f}$ (setting $\hat{\mathbb{R}} = \mathbb{R}$ with the pairing $(r, s) \mapsto rs: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$) and an isomorphism $\beta: G \to \operatorname{Hom}(G, \mathbb{T}), \ \beta(g)(\chi) = \chi(g)$. Here Hom (\hat{G}, \mathbb{R}) and Hom (\hat{G}, \mathbb{T}) both have the topology of pointwise convergence. There is a commutative diagram

PROPOSITION 6. Let G be a compact connected abelian group with $w(G) > \mathfrak{c}$. There is a suitable subset Y of L(G) with $Y \cup \{0\}$ compact and $s(L(G)) \leq \operatorname{card} Y = s(G)$.

Before we prove Proposition 6 in several steps, we observe, that Proposition 6 will finish the proof of Theorem 2, the main result: indeed, if Y is a suitable subset of L(G), the fact that the exponential function is a morphism with dense image, by Lemma 5, implies $\exp Y$ is a suitable subset of G contained in $G_a = \exp L(G)$. This is what we claim in Theorem 2.

The proof of Proposition 6 requires several further lemmas. The first of these is proved by diagram chasing.

LEMMA 7 (Diagram Lemma). Consider the commutative diagram of abelian groups with exact columns. If the first two rows are exact, then the third row is exact.

If X is a pointed compact space and $\mathbb{K} \in \{\mathbb{Z}, \mathbb{R}, \mathbb{T}, \mathbb{Q}, \mathbb{Q}/\mathbb{Z}\}$, we shall write $C(X, \mathbb{K})$ for the abelian group of all base-point preserving continuous functions under pointwise addition. Further, if A is a subgroup of \mathbb{K} , then $C_{\text{fin}}(X, A)$ will denote the subgroup of $C(X, \mathbb{K})$ consisting of all functions taking only finitely many values in A. Finally, $[X, \mathbb{T}]$ is the group of all homotopy classes of continuous base-point preserving functions $X \to \mathbb{T}$. We recall that $[X, \mathbb{T}] \cong H^1(X, \mathbb{Z})$ (see [1]).

LEMMA 8. For a compact pointed space X such that $[X, \mathbb{T}] = 0$ we have

$$C(X, \mathbb{R})/C_{\text{fin}}(X, \mathbb{Q}) \cong C(X, \mathbb{T})/C_{\text{fin}}(X, \mathbb{Q}/\mathbb{Z}).$$

Proof. The exact sequence

$$0 \to \mathbb{Z} \xrightarrow{j} \mathbb{R} \xrightarrow{p} \mathbb{T} \to 0$$

induces an exact sequence

$$0 \to C(X, \mathbb{Z}) \xrightarrow{j^{\star}} C(X, \mathbb{R}) \xrightarrow{p^{\star}} C(X, \mathbb{T}) \to [X, \mathbb{T}] \to 0$$

(see [1]). We now assume that $[X, \mathbb{T}] = \{0\}$. We set $B^* = C(X, \mathbb{R})/C_{\text{fin}}(X, \mathbb{Q})$ and $B = C(X, \mathbb{T})/C_{\text{fin}}(X, \mathbb{Q}/\mathbb{Z})$. Then we have a commutative diagram with exact columns whose first two rows are exact:

By the Diagram Lemma 7, the assertion follows.

LEMMA 9. Let X denote a compact space. Then, as rational vector spaces, $C(X, \mathbb{R}) \cong C(X, \mathbb{R})/C_{\text{fin}}(X, \mathbb{Q}).$

Proof. Write $R = \mathbb{Q} \oplus E$ with a suitable \mathbb{Q} -vector space complement E for \mathbb{Q} in \mathbb{R} . Then $C_{\text{fin}}(X, \mathbb{Q}) \cap C_{\text{fin}}(X, E) = \{0\}$ and thus there is a vector space complement \mathscr{F} of $C_{\text{fin}}(X, \mathbb{Q})$ in $C(X, \mathbb{R})$ containing $C_{\text{fin}}(X, E)$. We note that $E \cong \mathbb{Q}^{(c)}$ and thus $C_{\text{fin}}(X, E) \cong C_{\text{fin}}(X, \mathbb{Q})^{(c)}$, and \mathscr{F} contains a vector subspace $\mathscr{V} \cong C_{\text{fin}}(X, \mathbb{Q})^{(c)}$. We write $\mathscr{F} = \mathscr{V} \oplus \mathscr{W}$. Therefore

 $C(X,\mathbb{R})\cong C_{\mathrm{fin}}(X,\mathbb{Q})\oplus\mathscr{F}=C_{\mathrm{fin}}(X,\mathbb{Q})\oplus\mathscr{V}\oplus\mathscr{W}\cong\mathscr{V}\oplus\mathscr{W}=\mathscr{F}.$

Since $\mathscr{F} \cong C(X, \mathbb{R})/C_{\text{fin}}(X, \mathbb{Q})$ the assertion follows.

LEMMA 10. (i) If X is a compact pointed space such that $\dim_{\mathbf{R}} C(X, \mathbb{R}) \ge \mathfrak{c}$ then, for every subgroup A of $C(X, \mathbb{R})$, there is an injective \mathbb{R} -linear map $\mathbb{R} \otimes_{\mathbf{Z}} A \to C(X, \mathbb{R})$.

(ii) If X is a compact pointed space with w(X) > c then $\dim_{\mathbb{R}} C(X, \mathbb{R}) > c$ and so Part (i) applies.

Proof. (i) The inclusion $j: A \to C(X, \mathbb{R})$ induces an injective \mathbb{R} linear map $\operatorname{id}_{\mathbb{R}} \otimes_{\mathbb{Z}} j: \mathbb{R} \otimes_{\mathbb{Z}} A \to \mathbb{R} \otimes_{\mathbb{Z}} C(X, \mathbb{R})$ because \mathbb{R} is torsion-free. The assertion will be proved if we show that the \mathbb{R} -vector spaces $\mathbb{R} \otimes_{\mathbb{Z}} C(X, \mathbb{R})$ and $C(X, \mathbb{R})$ are isomorphic. For this it suffices to show that their \mathbb{R} -dimensions are equal.

Let S denote a set. Then, as Q-vector spaces, $\mathbb{R}^{(S)} \cong (\mathbb{Q}^{(c)})^{(S)} \cong \mathbb{Q}^{(c.S)}$. Thus card $\mathbb{R}^{(S)} = \mathfrak{c}$. card S. If V is a real vector space, then

$$\operatorname{card} V = \mathfrak{c} \,. \dim_{\mathfrak{R}} V \tag{(*)}$$

and if $\dim_{\mathbb{R}} V \ge \mathfrak{c}$, then $\dim_{\mathbb{R}} V = \operatorname{card} V$.

Now

$$\mathbb{R} \otimes_{\mathbb{Z}} C(X, \mathbb{R}) \cong \mathbb{R}^{(\dim_{\mathbb{Q}} C(X, \mathbb{R}))} = \mathbb{R}^{(\operatorname{card} C(X, \mathbb{R}))}$$

because $\dim_{\mathbb{Q}} C(X, \mathbb{R})$ is infinite. Further, card $C(X, \mathbb{R}) = w(X)^{\aleph_0}$ (see [1] and errata). Thus $\mathbb{R} \otimes_{\mathbb{Z}} C(X, \mathbb{R}) \cong \mathbb{R}^{(w(X)^{\aleph_0})}$. Hence $\dim_{\mathbb{R}} \mathbb{R} \otimes_{\mathbb{Z}} C(X, \mathbb{R}) = w(X)^{\aleph_0}$ and card $C(X, \mathbb{R}) = w(X)^{\aleph_0}$. Since $\dim_{\mathbb{R}} C(X, \mathbb{R})$ was assumed to be at least \mathfrak{c} we conclude

$$\dim_{\mathbf{R}} C(X, \mathbb{R}) = w(X)^{\aleph_0}.$$

This gives the desired equality of dimensions.

(ii) For infinite X we know card $C(X, \mathbb{R}) = w(X)^{\aleph_0}$. Thus $w(X) > \mathfrak{c}$ implies card $C(X, \mathbb{R}) > \mathfrak{c}$. If dim $C(X, \mathbb{R}) \leq \mathfrak{c}$, then

card
$$C(X, \mathbb{R}) = \mathfrak{c} . \dim_{\mathbb{R}} C(X, \mathbb{R}) \leq \mathfrak{c}$$
.

Therefore $\dim_{\mathbf{R}} C(X, \mathbb{R}) > \mathfrak{c}$, as asserted.

LEMMA 11. Let A denote an abelian torsion group, B a torsion-free abelian group and C a torsion-free subgroup of $A \oplus B$. Then the projection $p: A \oplus B \rightarrow B$ maps C injectively into B.

Proof. Since ker p = A we have ker $(p|C) = A \cap C$. As A is a torsion group and C is torsion-free we have $A \cap C = \{0\}$. Thus p|C is injective.

LEMMA 12. Let A be a subgroup of $C(X, \mathbb{T})$ for a compact space X with $w(X) > \mathfrak{c}$ and with $[X, \mathbb{T}] = 0$. Then there is an injective linear map $\mathbb{R} \otimes_{\mathbb{T}} A \to C(X, \mathbb{R})$.

Karl H. Hofmann and Sidney A. Morris

484

Proof. Since $[X, \mathbb{T}] = 0$ the group $C(X, \mathbb{T})$ is a quotient of $C(X, \mathbb{R})$ and thus is divisible. Hence its torsion subgroup $C_{\text{fin}}(X, \mathbb{Q}/\mathbb{Z})$ is a direct summand. Thus Lemma 11 applies and shows that A is isomorphic to a subgroup of $C(X, \mathbb{T})/C_{\text{fin}}(X, \mathbb{Q}/\mathbb{Z})$. This latter group is isomorphic to $C(X, \mathbb{R})$ by Lemmas 8 and 9. Thus A is isomorphic to a subgroup of $C(X, \mathbb{R})$. But then Lemma 10 applies and proves the claim.

LEMMA 13. Let E be a real topological vector space and X a subset of E such that E is the closed linear span of X. Then, as an additive topological group, $E = \langle X \cup \sqrt{2X} \rangle$. If X is discrete and closed in $E \setminus \{0\}$, then $X \cup \sqrt{2X}$ is suitable.

Proof. For each $x \in X$, the group $\langle\!\langle X \cup \sqrt{2X} \rangle\!\rangle$ contains $\mathbb{R} \cdot x = \langle\!\langle \mathbb{Z} + \sqrt{2\mathbb{Z}} \rangle\!\rangle \cdot x$, hence it contains the linear span of X.

If X is discrete, then $X \cup \sqrt{2X}$ is discrete, and if X is closed in $E \setminus \{0\}$ then so is $X \cup \sqrt{2X}$.

LEMMA 14. Let V be a real vector space and V* the algebraic dual with the topology of pointwise convergence. Denote by $(V^*)'$ the topological dual of V*. Then $e: V \to (V^*)'$, $e(v)(\alpha) = a(v)$ is an isomorphism of \mathbb{R} -vector spaces.

Proof. Since V^* separates the points of V, clearly e is injective. Let $\Omega: V^* \to \mathbb{R}$ be a continuous linear functional. Let $U = \Omega^{-1}(]-1, 1[)$. Then by the definition of the topology of pointwise convergence on V^* , there are vectors $v_1, \ldots, v_n \in V$ and there is an $\epsilon > 0$ such that $|\alpha(v_j)| < \epsilon$, $j = 1, \ldots, n$ implies $\alpha \in U$; that is, $|\Omega(\alpha)| < 1$. Let Fdenote the span of the v_j and $A = F^{\perp}$ the vector space of all $\alpha \in V^*$ vanishing on all v_j . then $\Omega(A)$ is a vector subspace of]-1, 1[and is, therefore $\{0\}$. Thus Ω induces a linear functional ω on $V^*/A \cong F^*$; that is, $\omega \in F^{**}$. Hence, by the duality of finitedimensional vector spaces, there is a $w \in F$ such that $\omega(\alpha + A) = \alpha(w)$. It follows that $\Omega(\alpha) = \alpha(w)$ and thus $\Omega = e(w)$. Thus e is surjective, too.

LEMMA 15. The closed \mathbb{R} -linear span of $\eta(X')$ is $C(X', \mathbb{R})$.

Proof. Set $E = \langle \langle \mathbb{R}, \eta(X') \rangle$, the closed \mathbb{R} -linear span of $\eta(X')$ in $C(X', \mathbb{R})^*$. We claim that $E = C(X', \mathbb{R})^*$. If not, then there is a non-zero continuous linear functional $\Omega: C(X', \mathbb{R})^* \to \mathbb{R}$ vanishing on E by the Hahn-Banach Theorem. Now we apply Lemma 14 with $V = C(X', \mathbb{R})$ and find that there is an $f \in C(X', \mathbb{R})$ such that $\Omega(\alpha) = a(f)$. Hence $E(f) = \{0\}$. In particular, $f(x) = \eta(x)(f) = 0$ for all $x \in X'$. Thus f = 0 and therefore $\Omega = 0$, a contradiction. Thus $E = C(X', \mathbb{R})$ is proved.

Now we are ready for a proof of Proposition 6. Thus we consider a compact connected abelian group G with weight $w(G) > \mathfrak{c}$. We know that $s(G)^{\aleph_0} = w(G)^{\aleph_0}$. If we had $s(G) \leq \mathfrak{c}$, then

$$w(G) \leqslant w(G)^{\aleph_0} = s(G)^{\aleph_0} \leqslant \mathfrak{c}^{\aleph_0} = \mathfrak{c},$$

in contradiction to our hypothesis. Thus G contains a special subset X of cardinality s(G) > c such that $X' = X \cup \{1\}$ is compact. For infinite suitable sets X we have $w(X') = \operatorname{card} X$. Thus w(X') > c. Since the pointed space X' is generating, the natural morphism $f: FX' \to G$ from the free compact abelian group FX' on X' to G satisfying f(x) = x for $x \in X$ is surjective. Hence $\hat{f}: \hat{G} \to \widehat{FX'}$ is injective. But $\widehat{FX'} \cong C(X', \mathbb{T})$ (see [1]). By Lemma 12 we thus have an injective \mathbb{R} -linear map $j: \mathbb{R} \otimes_{\mathbb{Z}} \hat{G} \to C(X', \mathbb{R})$. Its dual $\operatorname{Hom}_{\mathbb{R}}(j, \mathbb{R}): \operatorname{Hom}_{\mathbb{R}}(C(X', \mathbb{R}), \mathbb{R}) \to \operatorname{Hom}(\mathbb{R} \otimes_{\mathbb{Z}} \hat{G}, \mathbb{R})$ is a surjective continuous \mathbb{R} -linear map between topological vector spaces. But

$$\operatorname{Hom}_{R}(\mathbb{R} \otimes_{\mathbb{Z}} \hat{G}, \mathbb{R}) \cong \operatorname{Hom}(\hat{G}, \mathbb{R}) \cong L(G).$$

Generators of compact groups 485

Thus we have produced a continuous surjective \mathbb{R} -vector space morphism $j^*: C(X', \mathbb{R})^* \to L(G)$, where E^* denotes the algebraic dual of a real vector space E endowed with the topology of pointwise convergence. The natural map $\eta: X' \to C(X', \mathbb{R})^*$, $\eta(x)(f) = f(x)$ is a topological embedding since the continuous functions on a compact space separate the points, since the topology of $C(X', \mathbb{R})^*$ is that of pointwise convergence, and since X' is compact. By Lemma 5 we know that $Z = j^*(\eta(X') \setminus \{0\})$ is discrete and closed in $L(G) \setminus \{0\}$ and is such that $Z \cup \{0\}$ is compact. By Lemma 15, the closed \mathbb{R} -linear span of $\eta(X')$ is $C(X', \mathbb{R})$. Hence the closed \mathbb{R} -linear span of Z is L(G). Then by Lemma 13, the set $Y = Z \cup \sqrt{2Z}$ is suitable in L(G). By Lemma 5 we know that exp Y is suitable in G. Hence

 $s(G) \leq \operatorname{card}(\exp Y) \leq \operatorname{card} Y \leq \operatorname{card} X = s(G).$

So exp Y is a special subset of G. Since Y is a suitable subset of L(G) we have $s(L(G)) \leq \operatorname{card} Y = s(G)$.

This completes the proofs of Proposition 6 and of Theorem 2.

We do not know whether in fact Y is special in L(G) and s(L(G)) = s(G). This is left as an open question.

Some consequences

We shall draw some conclusions on the locally compact case.

LEMMA 16. Let G be a locally compact connected group. Then there is a compact normal subgroup N and a connected Lie group L and an injective morphism $\Phi: L \to G$ such that (i) $[N, \phi(L)] = \{1\}$, (ii) $G = N\phi(L)$, and (iii) there is an identity neighbourhood U in L such that $(n, u) \mapsto n\phi(u): N \times U \to N\phi(U)$ is a homeomorphism onto an identity neighbourhood of 1 such that $[N, \phi(U)] = \{1\}$.

Proof. (i) and (ii) are consequences of (iii), and (iii) is Iwasawa's local product theorem (see [5]).

LEMMA 17. Let everything be as in Lemma 16. Then $G_a = N_a \phi(L)$.

Proof. Since the subgroup $N_a \phi(L)$ is arc-connected we have $N_a \phi(L) \subseteq G_a$ and we now must prove the reverse containment. We shall do this by showing that for every one-parameter subgroup $X \colon \mathbb{R} \to G$ of G we have $X(\mathbb{R}) \subset N_-\phi(L)$. This will suffice since

The principal result on compact connected groups, Theorem 2, has the following

 G_a is generated by all one-parameter subgroups.

Set $f: N \times L \to G$, $f(n, g) = n\phi(g)$. Then f is a surjective morphism of a σ -compact locally compact group onto a locally compact group. Hence it is open. Now by the lifting theorem for one parameter groups there is a one parameter group $Y: \mathbb{R} \to N \times L$ such that $X = f \circ Y$. (See e.g. [4], lemma 1·3.) Now there are one-parameter groups $Y_1: \mathbb{R} \to N$ and $Y_2: \mathbb{R} \to L$ such that $Y(r) = (Y_1(r), Y_2(r))$ for all $r \in \mathbb{R}$. Then $Y_1(\mathbb{R}) \subseteq N_a$. Hence $X(r) = f((Y_1(r), Y_2(r))) \subseteq Y_1(\mathbb{R}) \phi(Y_2(\mathbb{R})) \subseteq N_a \phi(L)$.

KARL H. HOFMANN AND SIDNEY A. MORRIS

maps onto G under a quotient homomorphism, we have $w(N \times L) \ge w(G) > c$. Since $w(L) = \aleph_0$ we have w(N) > c. The Lie group L has a finite topological generating set F. We find a special subset S of N inside N_a by Theorem 2. Also, $X = S \cup \phi(F)$ is a suitable subset of G whose cardinality is card S = s(N). Now $\overline{\phi(L)}$ is a compact connected normal subgroup H of G with weight $w(H) \le c$. Now $N/(N \cap H) \cong G/H$. Thus $s(G/H) \le s(N)$. Hence $s(G) \le s(G/H) + s(H) \le s(N) + w(H) \le s(N) + c = s(N)$ since $s(N)^{\aleph_0} \ge w(X) > c$ and thus s(N) > c. Thus the cardinal of X is s(G) and thus X is special.

The methods used in the proof of this corollary allow us to conclude also that every locally compact connected group G has a suitable subset of G in G_a . But it is not immediate whether a special subset of G can be found inside G_a if $w(G) \leq \mathfrak{c}$ and thus s(G) is finite. This is the topic of another investigation.

REFERENCES

- K. H. HOFMANN and S. A. MORRIS. Free compact groups I: Free compact abelian groups. Topology Appl. 23 (1986), 41-64; Errata, ibid. 28 (1988), 101-102.
- [2] K. H. HOFMANN and S. A. MORRIS. Weight and c. J. Pure Appl. Algebra 68 (1990), 181-194.
- [3] K. H. HOFMANN and S. A. MORRIS. Free compact groups III: Free semisimple compact groups. In Proceedings of the Categorical Topology conference, Prague, August 1988 (editors J. Adámek and S. MacLane), (World Scientific Publishers 1989), pp. 208-219.
- [4] K. H. HOFMANN, T. S. WU and J. S. YANG. Equidimensional immersions of locally compact groups. Math. Proc. Cambridge Philos. Soc. 105 (1989), 253-261.
- [5] K. Iwasawa. On some types of topological groups. Ann. of Math. 50 (1949), 507-558.