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Introduction

It is well-known that a compact connected abelian group G has weight w(G) less
than or equal to the cardinality ¢ of the continuum if and only if it is monothetic;
that is, if and only if it can be topologically generated by one element. Hofmann and
Morris[2] extended this by showing that a compact connected (not necessarily
abelian) group can be topologically generated by two elements if and only if
w(@) < ¢

In any compact connected group ¢, the arc component of the identity plays a
special role, since it is the union of the one-parameter subgroups of . The second
author asked whether it is always possible to choose a minimal set of topological
generators of ¢ from within the arc component of . We shall prove here that this
is possible.

In Hofmann and Morris[2] it is shown that for w(G) > ¢, the compact connected
group G is not topologically generated by any finite set. In this case we look for
topological generating sets which are, in some sense, ‘thin’. A subset X of G is called
suitable if it topologically generates G, is discrete and is closed in G\{1}, where 1 is
the identity of G. If X has the smallest cardinality of any suitable subset of G’ then
G is called a special subset and its cardinality is denoted by s(&). In [2] it was proved
that if @ is a connected locally compact group with w(G) > ¢, then (@)% = w(G)™. It
is proved here that if G is a compact connected group, then the arc component of @
contains a special subset of G. As a corollary of this we deduce that the arc
component of a connected locally compact group G with w(G} > ¢ contains a special
subset of (.

The principal result
If G is a topological group and X is a subset we shall write {X» for the smallest
closed subgroup containing X.
We recall some definitions from [2].

Definition 1. (i) A subset X of a topological group @ is called suitable if it is discrete,
contained and closed in G\{1}, and ¢ = {X).

(ii} If G contains suitable subsets, then we set
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$(@) = min {card X : X is a suitable subset of G}

and call this cardinal the generating rank of G.
(iii) A subset X of G is called special if it is suitable and card X = s(@). |

We showed in [2] (theorem 1-12) that all locally compact groups contain suitable
sets. In particular, for all locally compact groups, the generating rank is defined.
Note that s(G) < w(G) always. In [3] (corollary 2-16), for each infinite cardinal
N, with X, < XM we gave an example of a compact connected group G, such that
s(G) < N, and w(G) = K%, In [2] (theorems 413 and 4'14) we proved that for a
compact connected group G with w(() < ¢ we have

0 if G is singleton,
s(@)= {1 if ¢is abelian and non-singleton,

2 if ¢ is non-abelian.

If w(@) > ¢ then s(G)% = w(G)™.
The arc component of the identity of ¢ will be denoted G,. The principal result of
this paper is the following:

THEOREM 2. Let G be a compact connected group. Then there is a special subset X of
G which s contained in G,,.

Several lemmas

The proof of Theorem 2 will proceed through several reductions. Until further
notice, G will always denote a compact connected group.

LEMMA 3. Assume that Theorem 2 is true for all abelian groups G. Then Theorem 2
18 true in general.

Proof. Let G be a compact connected non-abelian group and 7' a maximal protorus.
(See proposition 2-4 of [2], where a maximal protorus is defined to be a maximal
connected abelian subgroup of G and shown always to exist.) By hypothesis, we
can find a special subset X in 7,. By corollary 2-5 of (2], there is a ge @ such that
G = X U{g}». Since G is the union of the conjugates of 7' (see [2], proposition
2-4(ii)), there is an A€ @ such that ge ATh™. Clearly @ is topologically generated by
TUhRTh™. Hence @ = Y » with ¥ = Xy A,Xh™. Since X satisfies (i) and (iii) of
Definition 1, the same is true for Y. Also, Y T, URT, A =G, If 8, <w(G) <c¢,
then card X = 1 and thus, since 7 is not abelian, card Y = 2 = s((7) and so Y is special.
If ¢ < w(G), then card ¥ = card X = s((7), and hence Y is special. This completes the
proof of the Lemma.

After Lemma 3 the task is reduced to the abelian case.
LeEMMA 4. Theorem 2 is true for all abelian G with w(G) < c.

Proof. By Lemma 3, is suffices to show that each connected monothetic @ has a
generator in G/,. Now the hypothesis that ¢ is connected monothetic means that ¢
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is torsion free and of rank <c. Let T denote R/Z and p:R—T the quotient
homomorphism. The group T is algebraically isomorphic to Q/Z ® R. Hence there
is an 1n]ect1ve morphism, j: G > R such that po YE G - T remains injective. Hence the
dual jop:Z—~G = @ has dense image and factors through p:Z - R. Thus jp(1) is a
generator on the arc component of the identity. I

Now the only remaining case is: G is abelian and w(G') > ¢; that is, G is torsion free
of rank > c.

LemMaA 5. Let X be a suitable subset of a topological group H such that X U {1} is
compact. Assume that f:H—~ K is a morphism of topological groups with dense image.
Then f(X)\{1} is a suitable subset of K. If X is special and if s(H) < s(K) then f(X)\{1}
s special.

Proof. Since X is discrete and closed in G\{1}, and since X U {1} is compact, then
for every identity neighbourhood U in H the set X\U is finite. Now assume that V
is an identity neighbourhood of K. Then X\f!(V) is finite. Since hef(X)\V implies
h = flx) with xe X\f'(V), then f(X)\V is finite. Thus f(X)\{1} is discrete and
JIXu{1}) = f(X)yUu {1} is compact. Hence f(X)\{1} is closed. Also

K = f(H) = IKXY) € LAX)D = LfX)D.

So f(X)\{1} is a suitable subset of K. Finally, card ( f{IX)\{1}) < card X = s(H), whence
s(K) < card (f(X)\{1}) < s(f). Thus f(X)\{1} is special if s(H) < s(K). |

Before we proceed with the next lemma we recall that each locally compact abelian
group H has an exponential function exp: L(H)—~ H such that L(G#) = Hom (R, G),
expX = X(1), and G, = exp L(G). (For further comments, see [1], remark 2:2:2.) We
give L(G) the topology of uniform convergence on compact sets. Note that we have
an isomorphism o: L(G)—~ Hom (C:*, R), a(f) =f (setting R =R with the pairing
(r,8)>rs:RxR—R) and an isomorphism £:G - Hom (G, T), A(g)(x) = x(g). Here
Hom (@, R) and Hom (G, T) both have the topology of pointwise convergence. There
is a commutative diagram

L(G) =P Q@
] I
Hom(G,R) om@.p;, HOmM( G, T).

PrOPOSITION 6. Let G be a compact connected abelian group with w(G) > ¢. There is
a suttable subset Y of L(G) with Y U {0} compact and s(L(G)) < card Y = s(G).

Before we prove Proposition 6 in several steps, we observe, that Proposition 6 will
finish the proof of Theorem 2, the main result : indeed, if Y is a suitable subset of L(G),
the fact that the exponential function is a morphism with dense image, by Lemma
5, implies exp Y is a suitable subset of G contained in ¢/, = exp L(@). This is what we
claim in Theorem 2.

The proof of Proposition 6 requires several further lemmas. The first of these is
proved by diagram chasing.
16 PSP 113
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LeEMMa 7 (Diagram Lemma). Consider the commutative diagram of abelian groups
with exact columns. If the first two rows are exact, then the third row is exact.

0 0 0

0— 4,28, 0,—0
n P 0

0——d,—2> B, s 0,— 0
Iy P2 Oy

0 A, —2 B2 0, ——0
0 0 0.

If X is a pointed compact space and Ke{Z,R,T,Q,Q/Z}, we shall write C(X, K)
for the abelian group of all base-point preserving continuous functions under
pointwise addition. Further, if A is a subgroup of K, then C};,(X, 4) will denote the
subgroup of C(X, K) consisting of all functions taking only finitely many values in 4.
Finally, [X,T] is the group of all homotopy classes of continuous base-point
preserving functions X — T. We recall that [X, T] = HYX, Z) (see [1]).

LeMmMma 8. For a compact pointed space X such that [ X, T] = 0 we have
O(X: R)/Ofin(Xr @) = C(X’ T)/Cfin(X7 @/Z)
Proof. The exact sequence

J 4
0-Z—->R->T-0
induces an exact sequence

00X, Z) 50, R) > CX, Ty~ [X, T]- 0

(see [1]). We now assume that [X,T]={0}. We set B* = C(X, R)/Cy,(X, Q) and
B=CX,T)/Cy,(X,Q/Z). Then we have a commutative diagram with exact columns
whose first two rows are exact:
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By the Diagram Lemma 7, the assertion follows. |

LeMyma 9. Let X denote a compact space. Then, as rational wvector spaces,
CX,R) = C(X,R)/Cpn (X, Q).

Proof. Write R = Q @ E with a suitable Q-vector space complement E for Q in R.
Then Cy, (X, Q) N Cyy, (X, E) = {0} and thus there is a vector space complement & of
CinX, Q) in C(X,R) containing Cy,(X,E). We note that £ =~ Q© and thus
Con X, E) = Ciiy(X, Q)9, and & contains a vector subspace ¥ = Cy,, (X, Q). We
write & = v @ # . Therefore

CX,R)yz=CuyiX, Q)@ F =0, X, Q)BYV OW =V W =%
Since #F =~ C(X, R)/Cy;,(X, @) the assertion follows. |

LemMa 10. (i) If X is a compact pointed space such that dimg C(X, R) = ¢ then, for
every subgroup A of C(X,R), there is an injective R-linear map R®;4 - C(X, R).

(i2) If X is a compact pointed space with w(X) > ¢ then dimgC(X,R) > ¢ and so
Part (i) applies.

Proof. (i) The inclusion j:4—->C(X,R) induces an injective R linear map
dg®77:R®,4 - R®,;C(X, R)because Ris torsion-free. The assertion will be proved
if we show that the R-vector spaces R ®, C(X, R) and C(X, R) are isomorphic. For this
it suffices to show that their R-dimensions are equal.

Let S denote a set. Then, as Q-vector spaces, R x~ (Q)S ~ Q€S Thus
card RS = ¢.card 8. If V is a real vector space, then

card V = c.dimg V (%)

and if dimg V = ¢, then dimg V = card V.
Now
R ®Z C(X, R) ~ R(dimQC(X,R)) — R(cardC(X,R))
because dimgC(X,R) is infinite. Further, card C(X,R) = w(X)™ (see [1] and
errata). Thus R ®,C(X, R) =~ R®X™  Hence dimgR®,C(X,R) = wX)% and
card C(X, R) = w(X)™. Since dimy C(X, R) was assumed to be at least ¢ we conclude

dimg C(X, R) = w(X)e.

This gives the desired equality of dimensions.
(ii) For infinite X we know cardC(X,R) = w(X)™. Thus w(X)> ¢ implies
card C(X, R) > ¢. If dim C(X, R) < ¢, then

card C(X,R) = ¢.dimg C(X, R) < c.
Therefore dimg C(X, R) > ¢, as asserted. I

LeMMA 11. Let A denote an abelian torsion group, B a torsion-free abelian group and
C a torsion-free subgroup of A @ B. Then the projection p: A @ B— B maps C injectively
into B.

Proof. Since ker p = A we have ker (p|C) = AN C. As A4 is a torsion group and C'is
torsion-free we have 4 N C = {0}. Thus p|C is injective.

LeMMA 12. Let A be a subgroup of C(X, T) for a compact space X with w(X) > ¢ and
with [X, T] = 0. Then there is an injective linear map R®,4 - C(X, R).

16-2
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Proof. Since [X,T] =0 the group C(X,T) is a quotient of C(X,R) and thus is
divisible. Hence its torsion subgroup Cy;,(X, Q/Z) is a direct summand. Thus Lemma
11 applies and shows that 4 is isomorphic to a subgroup of C(X, T)/C,, (X, Q/Z).
This latter group is isomorphic to C(X, R) by Lemmas 8 and 9. Thus 4 is isomorphic
to a subgroup of C(X, R). But then Lemma 10 applies and proves the claim. |

LeMmMa 13. Let E be a real topological vector space and X a subset of E such that E is
the closed linear span of X. Then, as an additive topological group, E = X U /2X).
If X is discrete and closed in E\{0}, then X U /2X is suitable.

Proof. For each zeX, the group {X U+/2X) contains R.x = {Z++/2Z) .z,
hence it contains the linear span of X.

If X is discrete, then X U +/2X is discrete, and if X is closed in E\{0} then so is
xuvex. |

LEMMA 14. Let V be a real vector space and V* the algebraic dual with the topology of
pointwise convergence. Denote by (V*) the topological dual of V*. Then e:V— (V*),
e(v) () = a(v) ts an isomorphism of R-vector spaces.

Proof. Since V* separates the points of V, clearly e is injective. Let Q:¥7* - R be
a continuous linear functional. Let U = Q7 *(]—1, 1[). Then by the definition of the
topology of pointwise convergence on V*, there are vectors v,, ...,v, €V and there is
an € > 0 such that |a(v;)| <€, j=1,...,n implies aeU; that is, |Q(a)| < 1. Let F
denote the span of the v; and 4 = F* the vector space of all a € V* vanishing on all
v;. then Q(4) is a vector subspace of ] —1, 1[ and is, therefore {0}. Thus Q induces a
linear functional w on V*/4 = F*; that is, we F'**. Hence, by the duality of finite-
dimensional vector spaces, there is a we F such that w(a+A4) = a(w). It follows that
Q(a) = a(w) and thus Q = e(w). Thus e is surjective too.

LeMMA 15. The closed R-linear span of 9(X’) is C(X', R).

Proof. Set B = {R.5(X")», the closed R-linear span of #(X’) in C(X’, R)*. We
claim that £ = C(X’, R)*. If not, then there is a non-zero continuous linear functional
Q:0(X’,R)* >R vanishing on £ by the Hahn-Banach Theorem. Now we apply
Lemma 14 with V= C(X’,R) and find that there is an feC(X’,R) such that
Q(a) = a(f). Hence E(f) = {0}. In particular, f(x) = y{x) (f) = 0 for all ze X". Thus
f =0 and therefore Q = 0, a contradiction. Thus £ = C(X’, R) is proved. |

Now we are ready for a proof of Proposition 6. Thus we consider a compact
connected abelian group G with weight w(G) > ¢. We know that s(G)% = w(G)™. If we
had s(@) < ¢, then

w(@) < w(G)Po = s(G) < Mo =g,

in contradiction to our hypothesis. Thus ¢ contains a special subset X of cardinality
$(@) > ¢ such that X" = X U {1} is compact. For infinite suitable sets X we have
w(X’) = card X. Thus w(X’) > ¢. Since the pointed space X’ is generating, the natural
morphism f: FX’— G from the free compact abe abelian group FX’ on/g to @ satistying
flz) = x for ze X is surjective. Hencef G>FX is injective. But FX' =~ C(X’, T) (see
[1]). By Lemma 12 we thus have an injective R-linear map j: R ®ZG—> C(X',R). Its
dual Homg(j, R): Homg(C(X’, R), R)—> Hom (R ®ZC:*, R) is a surjective continuous
R-linear map between topological vector spaces. But

Hom (R ®,G,R) ~ Hom (G, R) = L(G).
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Thus we have produced a continuous surjective R-vector space morphism
j*: C(X',R)* - L(G), where E* denotes the algebraic dual of a real vector space £
endowed with the topology of pointwise convergence. The natural map 5: X’ - C(X’,
Ry*, 9(x) (f) = f(z) is a topological embedding since the continuous functions on a
compact space separate the points, since the topology of C(X’, R)* is that of
pointwise convergence, and since X’ is compact. By Lemma 5 we know that Z =

*(p(X")\{0}) is discrete and closed in L(G)\{0} and is such that Z U {0} is compact. By
Lemma 15, the closed R-linear span of #(X’) is C(X’, R). Hence the closed R-linear
span of Z is L(@). Then by Lemma 13, the set Y = Z U /27 is suitable in L((). B
Lemma 5 we know that exp Y is suitable in ¢. Hence

$(@) < card (exp Y) < card ¥ < card X = s((¥).
So expY is a special subset of G. Since Y is a suitable subset of L(G) we have
s(L(@)) € card Y = s(@).
This completes the proofs of Proposition 6 and of Theorem 2. |

We do not know whether in fact Y is special in L(®) and s(L(G)) = s(@). This is left
as an open question.

Some consequences

We shall draw some conclusions on the locally compact case.

LEMMa 16. Let G be a locally compact connected group. Then there is a compact
normal subgroup N and o connected Lie group L and an injective morphism . L — G
such that (i) [N, ¢(L)] = {1}, (ii) G = Np(L), and (iii) there vs an identity neighbourhood
Uin L such that (n,u)—> ng(u): Nx U— Np(U) is a homeomorphism onto an identity
netghbourhood of 1 such that [N ¢(U)] = {1}.

Proof. (i) and (ii) are consequences of (iii), and (iii) is Iwasawa’s local product
theorem (see [5]).

Lemma 17. Let everything be as in Lemma 16. Then G, = N, (L)

Proof. Since the subgroup N, ¢(L) is arc-connected we have N, ¢(L) = G, and we
now must prove the reverse containment. We shall do this by showing that for every

npe-narameter snharoun X -R - (7 of fLwe have X/IRY € N_A(T) This will suffice since
= .

G, is generated by all one-parameter subgroups.

Set f NxL—~G, fin,g) = nd(g). Then fis a surjective morphism of a o-compact
locally compact group onto a locally compact group. Hence it is open. Now by the
lifting theorem for one parameter groups there is a one parameter group Y: R—>Nx L
such that X = fo Y. (See e.g. [4], lemma 1-3.) Now there are one-parameter groups
Y,:R—-Nand ¥,: R—>L such that Y(r) = (Y,(r), Y,(r)) for all reR. Then Y,(R) & N,.

Hence X(r) = f((Y,(r), Y,(r))) € H(R) $(Y,(R)) < N, $(L).
The principal result on compact connected groups, Theorem 2, has the following
corollary:

CoROLLARY 18. Let G be a locally compact connected group with w(G@) > ¢. Then G,
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maps onto ¢ under a quotient homomorphism, we have w(N x L) 2 w(G) > ¢. Since
w(L) = X, we have w(N) > ¢. The Lie group L has a finite topological generating set
F. We find a special subset § of N inside N, by Theorem 2. Also, X = SU¢(F) is a
suitable subset of G whose cardinality is card S = s(N). Now (L) is a compact
connected normal subgroup H of G with weight w(H) < ¢. Now N/(NnH) = G/H.
Thus s(G/H) < s(V). Hence s(Q)< s(G/H)+s(H) < s(N)+w(H) < s(N)+ ¢ = s(N)
since s(N)% = w(X)™ > w(X) > ¢ and thus s(N) > ¢. Thus the cardinal of X is s(&) and
thus X is special.

The methods used in the proof of this corollary allow us to conclude also that every
locally compact connected group @ has a suitable subset of ¢ in G,,. But it is not
immediate whether a special subset of & can be found inside G, if w(F) < ¢ and thus
s(@) is finite. This is the topic of another investigation.
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