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Introduction

It is well-known that a compact connected abelian group G has weight w(G) less
than or equal to the cardinality c of the continuum if and only if it is monothetic;
that is, if and only if it can be topologically generated by one element. Hofmann and
Morris [2] extended this by showing that a compact connected (not necessarily
abelian) group can be topologically generated by two elements if and only if
w(G) < c.

In any compact connected group G, the arc component of the identity plays a
special role, since it is the union of the one-parameter subgroups of G. The second
author asked whether it is always possible to choose a minimal set of topological
generators of G from within the arc component of G. We shall prove here that this
is possible.

In Hofmann and Morris [2] it is shown that for w(G) > c, the compact connected
group G is not topologically generated by any finite set. In this case we look for
topological generating sets which are, in some sense, 'thin'. A subsetX of G is called
suitable if it topologically generates G, is discrete and is closed in (?\{1}, where 1 is
the identity of G. If X has the smallest cardinality of any suitable subset of G then
G is called a special subset and its cardinality is denoted by s(G). In [2] it was proved
that if G is a connected locally compact group with w(G) > c, then s(G)^° = w(Cr)x». It
is proved here that if G is a compact connected group, then the arc component of G
contains a special subset of G. As a corollary of this we deduce that the arc
component of a connected locally compact group G with w(G) > c contains a special
subset of G.

The •principal result

If G is a topological group and X is a subset we shall write <^X^> for the smallest
closed subgroup containing X.

We recall some definitions from [2].

Definition 1. (i) A subset X of a topological group G is called suitable if it is discrete,
contained and closed in C?\{1}, and G = C?O>.

(ii) If G contains suitable subsets, then we set
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s(G) = min{cardZ:X is a suitable subset of G)

and call this cardinal the generating rank of G.
(iii) A subset X of G is called special if it is suitable and card X = s(G). I

We showed in [2] (theorem 1-12) that all locally compact groups contain suitable
sets. In particular, for all locally compact groups, the generating rank is defined.
Note that s(G) ^ w(G) always. In [3] (corollary 2-16), for each infinite cardinal
&<„ with K, < X*° we gave an example of a compact connected group Ov such that
s(G) ^ Kr and w(G) = K^°. In [2] (theorems 4-13 and 4-14) we proved that for a
compact connected group G with w(G) ^ c we have

s(G) =

'0 if G is singleton,

1 if G is abelian and non-singleton,

2 if G is non-abelian.

If w(G) > c then s(Gf° = w(G)K°.
The arc component of the identity of G will be denoted Ga. The principal result of

this paper is the following:

THEOREM 2. Let G be a compact connected group. Then there is a special subset X of
G which is contained in Gn.

Several lemmas

The proof of Theorem 2 will proceed through several reductions. Until further
notice, G will always denote a compact connected group.

LEMMA 3. Assume that Theorem 2 is true for all abelian groups G. Then Theorem 2
is true in general.

Proof. Let G be a compact connected non-abelian group and T a maximal protorus.
(See proposition 2-4 of [2], where a maximal protorus is defined to be a maximal
connected abelian subgroup of G and shown always to exist.) By hypothesis, we
can find a special subset X in Ta. By corollary 2-5 of [2], there is a geG such that
G = <^X U {</}». Since G is the union of the conjugates of T (see [2], proposition
2-4(ii)), there is an heG such that gehTh'1. Clearly G is topologically generated by
TUhTh'1. Hence G = « F » with Y = X(JhXh~1. Since X satisfies (i) and (iii) of
Definition 1, the same is true for Y. Also, Y £ Ta U hTah~x c Ga. If No ^ w(G) < c,
then cardX = 1 and thus, since G is not abelian, card Y = 2 = s(G) and so Y is special.
If c < w{G), then card Y = cardX = s(G), and hence Y is special. This completes the
proof of the Lemma. I

After Lemma 3 the task is reduced to the abelian case.

LEMMA 4. Theorem 2 is true for all abelian G with w(G) < c.

Proof. By Lemma 3, is suffices to show that each connected monothetic G has a
generator in Ga. Now the hypothesis that G is connected monothetic means that G
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is torsion free and of r a n k l e . Let T denote U/Z and p-.U^-J the quotient
homomorphism. The group T is algebraically isomorphic to Q/Z © U. Hence there
is an injective morphism, j : G -> U such that p o j : G -> T remains injective. Hence the
dual jop:Z-+G = G has dense image and factors through p:Z->U. Thus jp(l) is a
generator on the arc component of the identity. I

Now the only remaining case is: G is abelian and w(G) > c; that is, G is torsion free
of rank > c.

LEMMA 5. Let X be a suitable subset of a topological group H such that JU{1} is
compact. Assume that f.H^K is a morphism of topological groups with dense image.
Then f(X)\{l} is a suitable subset of K. If X is special and if s(H) ^ s{K) then f(X)\{l}
is special.

Proof. Since X is discrete and closed in G\{1}, and since X U {1} is compact, then
for every identity neighbourhood U in H the set X\U is finite. Now assume that V
is an identity neighbourhood of K. Then X\f~1{V) is finite. Since hef(X)\V implies
h=f(x) with xeX^^V), then f(X)\V is finite. Thus f(X)\{l} is discrete and
f{X U {1}) =f(X) U {1} is compact. Hence /(X)\{1} is closed. Also

K=f(H) =

So/(Z)\{1} is a suitable subset of K. Finally, card (f(X)\{l}) ^ cardZ = s(H), whence
s(K) ^ card (f(X)\{l}) sj s(H). Thus /(X)\{1} is special if s(H) ^ s(K). I

Before we proceed with the next lemma we recall that each locally compact abelian
group H has an exponential function exp: L(H)^H such that L(G) = Horn (IR, G),
expX = X(l), and Ga = expL(G). (For further comments, see [1], remark 2-2-2.) We
give L(G) the topology of uniform convergence on compact sets. Note that we have
an isomorphism a: L(G)^Hom (G, U), a{f)=f (setting M = U. with the pairing
(r,s)i—>rs:IR x (R-̂  IR) and an isomorphism /?:(?->Horn (G,T), 0(g)(x) = X(d)- Here
Horn (G, U) and Horn (G, T) both have the topology of pointwise convergence. There
is a commutative diagram

L(G) 22 >G

P

Hom(G,T).

PROPOSITION 6. Let G be a compact connected abelian group with w(G) > c. There is
a suitable subset Y of L(G) with Y U {0} compact and s(L(G)) ^ card Y = s(G).

Before we prove Proposition 6 in several steps, we observe, that Proposition 6 will
finish the proof of Theorem 2, the main result: indeed, if Y is a suitable subset of L(G),
the fact that the exponential function is a morphism with dense image, by Lemma
5, implies exp Y is a suitable subset of G contained in Ga = expL(G). This is what we
claim in Theorem 2.

The proof of Proposition 6 requires several further lemmas. The first of these is
proved by diagram chasing.

PSP 113
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LEMMA 7 (Diagram Lemma). Consider the commutative diagram of abelian groups
with exact columns. If the first two rows are exact, then the third row is exact.

0 0 0

I . I . I
V/ x\.f) x5o

ft

0 0 0.

If X is a pointed compact space and IKe{Z, R, T,Q,Q/Z}, we shall write C(X, IK)
for the abelian group of all base-point preserving continuous functions under
pointwise addition. Further, if A is a subgroup of IK, then Ciin(X,A) will denote the
subgroup of C(X, IK) consisting of all functions taking only finitely many values in A.
Finally, [X, T] is the group of all homotopy classes of continuous base-point
preserving functions X^J. We recall that [X,T] S BX{X,Z) (see [1]).

LEMMA 8. For a compact pointed space X such that [X, T] = 0 we have

C(X, U)/Cnn(X,Q) S C(X,J)/Cnn(X,Q/Z).

Proof. The exact sequence

induces an exact sequence

0 -+ C(X, Z) C C(X, R) ̂  C(X, J) -+ [X, T] -> 0

(see [1]). We now assume that [X,J] = {0}. We set B* = C(X, R)/Ctin{X,Q) and
B = C(X, T)/C[in(X, Q/Z). Then we have a commutative diagram with exact columns
whose first two rows are exact:

0 0 0

0 *Crm(X,Z) -Crm(X,Q) -Crm(X,Q/Z) -0

I I I
0 • C(X,Z) «• C(X,U) •• 0(X,J) *0

+B

0.
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By the Diagram Lemma 7. the assertion follows. I

LEMMA 9. Let X denote a compact space. Then, as rational vector spaces,

Proof. Write R = Q © E with a suitable Q-vector space complement E for Q in IR.
Then Ctln(X, Q) n Ctin(X,E) = {0} and thus there is a vector space complement !F of
Ctin(X,Q) in C(X, R) containing CtiD(X,E). We note that E ^ Q(t) and thus
C!ia(X,E) S Ctln(X,Q)(c), and J5" contains a vector subspace "V S Ctln(X,Q)M. We
write J5" = -f © W. Therefore

C(X, U) s CSin(X, Q) © & = Cnn (X, Q) © -V © -W ^ V © TT = J^.

Since J5" S C(X, !R)/Crin(X, Q) the assertion follows. I

LEMMA 10. (i) If X is a compact pointed space such that dimRC(X, IR) ̂  c then, for
every subgroup A of C(X, IR), there is an injective R-linear map U. ®ZA -> C(X, U).

(ii) If X is a compact pointed space with w{X) > c then dimR C(X, U) > c and so
Part (i) applies.

Proof, (i) The inclusion j : A^-C(X, U) induces an injective IR linear map
idR ® z j : IR ®XA -> IR ® z C(X, IR) because U. is torsion-free. The assertion will be proved
if we show that the IR-vector spaces R ® z C(X, U) and C(X, U) are isomorphic. For this
it suffices to show that their IR-dimensions are equal.

Let S denote a set. Then, as Q-vector spaces, IR(S) ^ (Q(c))<5) ^ Q<cS>. Thus
cardlR(S> = c.card»S. If V is a real vector space, then

card V = c. dimR V (*)

and if dimR V ̂  c, then dimH V — card V.
Now

, IR) S

because dimo C(X, U) is infinite. Further, card C(X, U) = w(Xf« (see [1] and
errata). Thus U ®ZC(X, U) S |R<wwNo>. Hence dimRR ®ZC(X, U) = w(Xf° and
card C(X, U) = w(X)K°. Since dimRC(Z, IR) was assumed to be at least c we conclude

This gives the desired equality of dimensions.
(ii) For infinite X we know card C(X, U) = w(X)N«. Thus w{X) > c implies

card G(X, IR) > c. If dim C{X, R) =$ c, then

cardC(X, IR) = c.dimRC(X, IR) ̂  c.

Therefore dimRC'(X IR) > c, as asserted. I

LEMMA 11. Let A denote an abelian torsion group, B a torsion-free abelian group and
C a torsion-free subgroup of A@B. Then the projection p: A@B^-B maps C injectively
into B.

Proof. Since kerp = A we have ker (p\ G) = A D C. As A is a torsion group and C is
torsion-free we have A ("I C = {0}. Thus p\C is injective. I

LEMMA 12. Let A be a subgroup of C(X, T) for a compact space X with w(X) > c and
with [X, T] = 0. Then there is an injective linear map U ®ZA -> C(X, IR).
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Proof. Since [X, T] = 0 the group C(X, T) is a quotient of C'(X, U) and thus is
divisible. Hence its torsion subgroup Ctin(X, <Q>/Z) is a direct summand. Thus Lemma
11 applies and shows that A is isomorphic to a subgroup of C\X, T)/CSin(X, Q/Z).
This latter group is isomorphic to C(X, (R) by Lemmas 8 and 9. Thus A is isomorphic
to a subgroup of C(X, U). But then Lemma 10 applies and proves the claim. I

LEMMA 13. Let E be a real topological vector space and X a subset of E such that E is
the closed linear span of X. Then, as an additive topological group, E = <^X U \/2X^>.
If X is discrete and closed in E\{0}, then X U \/2X is suitable.

Proof. For each xeX, the group « Z U A / 2 X » contains U.x = «Z + V2Z».:c,
hence it contains the linear span of X.

If X is discrete, then X\J \/2X is discrete, and if X is closed in E\{0} then so is
I

LEMMA 14. Let V be a real vector space and V* the algebraic dual with the topology of
pointwise convergence. Denote by (V*)' the topological dual of V*. Then e:V->(V*)',
e(v) (a) = a(v) is an isomorphism of U-vector spaces.

Proof. Since V* separates the points of V, clearly e is injective. Let £2:F*->IR be
a continuous linear functional. Let U = Q"1(]— 1,1[). Then by the definition of the
topology of pointwise convergence on V*, there are vectors vt, ...,vne V and there is
an e > 0 such that \a(Vj)\ < e, j = 1, ...,n implies oceU; that is, |Q(a)| < 1. Let F
denote the span of the Vj and A = F1 the vector space of all a e F* vanishing on all
Vy then £l(A) is a vector subspace of ]— 1,1[ and is, therefore {0}. Thus Q. induces a
linear functional w on V*/A = F*; that is, (oeF**. Hence, by the duality of finite-
dimensional vector spaces, there is a weF such that a)(oc+A) = <x(w). It follows that
Q(a) = oc(w) and thus Q. = e(w). Thus e is surjective, too. I

LEMMA 15. The closed U-linear span of y(X') is C(X', U).

Proof. Set E = « I R . T / ( X ' ) » , the closed [R-linear span of v(X') in C(X', U)*. We
claim that 2? = C(X', U)*. If not, then there is a non-zero continuous linear functional
Q:C(X',U)*-*-U vanishing on E by the Hahn-Banach Theorem. Now we apply
Lemma 14 with V=C{X',U) and find that there is an feC(X',U) such that
Q(a) = a(f). Hence E(f) = {0}. In particular, f(x) = i](x) (/) = 0 for all xeX'. Thus
/ = 0 and therefore D = 0, a contradiction. Thus E = C(X', (R) is proved. I

Now we are ready for a proof of Proposition 6. Thus we consider a compact
connected abelian group G with weight w(G) > c. We know that s(6r)N° = w((?)N». If we
had s(G) ^ c, then

w(G) ^ w(Gfo = s(Gf° ^ c*° = c,

in contradiction to our hypothesis. Thus G contains a special subset X of cardinality
s(G) > c such that X' =1U{1} is compact. For infinite suitable sets X we have
w(X') = cardX Thus w(X') > c. Since the pointed space X' is generating, the natural
morphism/: FX''->• G from the free compact abelian group FX' on X' to G satisfying
f(x) = x for xeX is surjective. Hence/: G^FX^is injective. B u t ^ F Z ^ C(X', J) (see
[1]). By Lemma 12 we thus have an injective R-linear map j : U ®ZG^C(X', (R). Its
dual HomR(?, U): HomR(C(X/,U),U)^B.om(U®zG, U) is a surjective continuous
(R-linear map between topological vector spaces. But

HomH(lR ® z G, U) s Horn (G, U) ̂  L(G).
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Thus we have produced a continuous surjective IR-vector space morphism
j * : C(X'.U)*^L(G), where E* denotes the algebraic dual of a real vector space E
endowed with the topology of pointwise convergence. The natural map n:X'^ C(X',
U)*, T](x)(f) = f(x) is a topological embedding since the continuous functions on a
compact space separate the points, since the topology of C(X', R)* is that of
pointwise convergence, and since X' is compact. By Lemma 5 we know that Z =
j*(i)(X')\{0}) is discrete and closed in L(G)\{0} and is such that Z U {0} is compact. By
Lemma 15, the closed (R-linear span of v(X') is C(X',U). Hence the closed IR-linear
span of Z is L(G). Then by Lemma 13, the set Y = Z U \/2Z is suitable in L(G). By
Lemma 5 we know that exp Y is suitable in G. Hence

s(G) s$ card (exp Y) < card Y ^ cardX = s{G).

So exp Y is a special subset of G. Since Y is a suitable subset of L(G) we have
s(L(G)) sS ca,rdY= s(G).

This completes the proofs of Proposition 6 and of Theorem 2. I

We do not know whether in fact Y is special in L(G) and s(L(G)) = s(G). This is left
as an open question.

Some consequences

We shall draw some conclusions on the locally compact case.

LEMMA 16. Let G be a locally compact connected group. Then there is a compact
normal subgroup N and a connected Lie group L and an injective morphism O:L-^(?
such that (i) [N, <p(L)~\ = {1}, (ii) G = N<f>(L), and (iii) there is an identity neighbourhood
U in L such that (n,u)i-^n<f>(u): Nx U^~N<fr(U) is a homeomorphism onto an identity
neighbourhood of 1 such that [N, <p(U)] = {1}.

Proof, (i) and (ii) are consequences of (iii), and (iii) is Iwasawa's local product
theorem (see [5]).

LEMMA 17. Let everything be as in Lemma 16. Then Ga = Na<j>(L).

Proof. Since the subgroup Na <f>(L) is arc-connected we have Na <j>(Lj) c Ga and we
now must prove the reverse containment. We shall do this by showing that for every
one-parameter subgroupX: U->• G of G we haveX(R) ^ Na<j>(L). This will suffice since
Ga is generated by all one-parameter subgroups.

Set / : NxL^G, f(n,g) = n<f>(g). Then / is a surjective morphism of a a-compact
locally compact group onto a locally compact group. Hence it is open. Now by the
lifting theorem for one parameter groups there is a one parameter group Y: U->NxL
such that X = / o Y. (See e.g. [4], lemma 1-3.) Now there are one-parameter groups
yt: IR^iVand Y2: U^L such that Y(r) = (Yx(r), Y2(r)) for all reU. Then Y^U) ^Na.
Hence X(r) =/((F1(r), Y2(r))) c Y^R) <f>(Y2(M)) cz Naj>(L). I

The principal result on compact connected groups, Theorem 2, has the following
corollary:

COROLLARY 18. Let G be a locally compact connected group with w(G) > c. Then Ga

contains a special subset of G.

Proof. We consider the representation G = N(/>(L) of Lemmas 16 and 17. Since NxL
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maps onto G under a quotient homomorphism, we have w(NxL) ^ w(G) > c. Since
w(L) = Xo we have w(N) > c. The Lie group L has a finite topological generating set
F. We find a special subset S of N inside Na by Theorem 2. Also, X = S U <fi(F) is a
suitable subset of G whose cardinality is card*S = s(N). Now <j>(L) is a compact
connected normal subgroup H of G with weight w(H) ^ c. Now N/(N C\H) = G/H.
Thus s(G/H) ^ s(N). Hence s(G) s$ s(G/H) + s{H) ^ s(N) + w(H) ^ s(JV) + c = s(N)
since 5(iV)x» = M;(X)X» ^ M;(X) > c and thus s(N) > c. Thus the cardinal of X is s(G) and
thus X is special. I

The methods used in the proof of this corollary allow us to conclude also that every
locally compact connected group G has a suitable subset of G in Ga. But it is not
immediate whether a special subset of G can be found inside Ga if w(G) ̂  c and thus
s(G) is finite. This is the topic of another investigation.
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