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1. Introduction

I t is proved that if G is a compact connected Hausdorff group of uncountable
weight, w(G), then G contains a homeomorphic copy of [0,1]W{O). From this it is
deduced that such a group, G, contains a homeomorphic copy of every compact
Hausdorff group with weight w(G) or less. It is also deduced that every infinite
compact Hausdorff group G contains a Cantor cube of weight w(G), and hence has
[0,1]W(G) as a quotient space.

1-1. Definitions and Notation

(a) A finite subset {xltx2,..., xk) of a group G is said to be independent if it does not
contain the identity, 1, of G and x">x"2... x£* = 1, for integers nx,..., nk, implies that
x"1 = x"' = ... = x£* = 1. An infinite subset X of a group G is said to be independent
if each finite subset of X is independent. If G is any group, then it has a maximal
independent set and every maximal independent set has the same cardinality. The
cardinality of such a set is called the rank of G. (See [4], §16 and [5], §A11.)

(b) If m is any cardinal number, then O™ denotes the product of m copies of the
discrete 2-point space, D>2, with the product topology, and is called a Cantor cube. Of
course, D£° is the Cantor space.

(c) If X is a topological space, then we denote max {m: TO is a cardinal andX has
a subspace homeomorphic to [0, l]m} by S(X). In ([10], §4-7) it is noted that if G is a
locally compact finite-dimensional Hausdorff group, then S(G) = dim(G).

(d) Let X be a topological space. We note min {card SB: 3$ is an open basis for X}
by w(X); this is said to be the weight of X.

(e) We denote the closed unit interval [0,1] by I.
(/) If G is a locally compact Hausdorff abelian group, then G denotes the locally

compact Hausdorff abelian group known as the dual group of G [5].

2. Subspaces of Compact Groups

In this section we establish the fact that every connected (locally) compact
Hausdorff group of uncountable weight, say m, contains a subspace homeomorphic
to the cube lm.

PROPOSITION 2-1 ([5], §24-27). Let G be a non-trivial discrete torsion-free abelian
group of rank m, for some cardinal number m. Then G has a subspace homeomorphic
to 0m. I
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We now prove the abelian version of our main result.

PROPOSITION 2-2. Let K be an infinite compact connected Hausdorff abelian group with
w{K) > Ko. Then K has a subspace homeomorphic to B")(/°.

Proof. As K is compact and connected, K is a discrete torsion-free abelian group
([5], §23-17 and 24-25). By ([5], §24-14) we have w(K) = w(K). But w(K) = card(Z),
as K is discrete. So card K > Ko, and thus card (K) = rank (K). The result then follows
from Proposition 2 1 . I

The following result shows that any compact connected Hausdorff group can be
' sandwiched' between two large products, where the structure of these products is
known. Note that our definition of simple connectedness includes path-con-
nectedness.

THEOREM 2-3. Let G be a compact connected Hausdorff group and A the connected
component at the identity of the centre of G. Then there exist a family of compact simply
connected simple Lie groups {Lx: A e A} and a totally disconnected closed subgroup K of
the centre of A x IIAeALA, such that if

(i) CA is the centre of LA, for each AeA,
(ii) <fr is the quotient homomorphism A x YlAeALA-*-G which factors out K, and

(iii) i/r is the quotient homomorphism of G onto riAeA(LA/CA) which factors out
<p(A xnA 6 ACA), the image in G of the centre of A x Y\XeKLK, then G is 'sandwiched'
between the two groups A x IlAeALA and nAeA(LA/CA) as follows:

AeA AeA

and i/rocfi is the quotient homomorphism which factors out A x IlAeACA.

Proof. This is an immediate consequence of ([13], §6.5.6), which states that

AeA

where K is a totally disconnected closed subgroup of the centre of A x IIA6ALA. I

Note that if A is any subspace of a topological space, G, then w(A) ̂  w(G). Note
also that for any m ^ 1, we have w(im) = max {TO, NO}. From these observations and
the definition of S(G), we see that 8(G) ^ w(G).

We now prove the main result which says that every compact connected Hausdorff
group, G, of uncountable weight contains a subspace homeomorphic to iw(G); that is,
8{G) = w(G).

THEOREM 2-4. Let G be an infinite compact connected Hausdorff group with
w(G) > Ko. Then 8{G) = w(G).

Proof. From Theorem 2-3, we have the following open continuous surjective
homomorphisms:

AeA AeA
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from which we obtain the inequality

AeA

W(G)

As each LA is a non-trivial connected Lie group and, in particular, a non-discrete
metrizable group, w(Lx) = No. For the same reason, w(LJCx) = Ko. So we have

max {w(A), Ko, card A} ̂  w(G) ̂  max {card A, Ko}.

As A is a topological subgroup of G,w(A) ^ w(G). Therefore, we have

w(G) = max {w(A), Ko, card A}.

As w(G) > No, there are two possibilities for w(G) — either w(G) = w(A) or
w(G) = card A. We examine each possibility.

(i) Assume w(G) = w(A). As A is a compact connected Hausdorff abelian group,
and w(A) > Xo, from Proposition 22, A contains a subspace homeomorphic to
QWM) = J«XG) T h u g g^ ^ w ^ a n ( j g o s ^ = w ^ a g r e q u i r e d

(ii) Assume w;(6?) = card A. Let <j>T:X\.ielLK-*-G be the restriction of <f> to
{1} x IIAeAZiA, where 1 is the identity element of the group A. As Lx is a simple Lie
group, each CA, being a closed normal subgroup of LA, must be discrete (and finite).
It follows from ([11], proposition 24) that the quotient map, px, from LA onto
LJCA is a local isomorphism, for each AeA. Thus there exists an open
neighbourhood, NA, of the identity inLA, so thatiVA maps homeomorphically onto its
image in LJCX. Hence, the composite map <j>o<f>r = ITAeApA

AeA AGA

when restricted to IlAeAiVA, is one-to-one. As LA is a connected Lie group, it is locally
Euclidean, and so Nx contains a homeomorphic copy of D. Therefore 1 X ^ 7 ^ ^
contains a homeomorphic copy of |cardA. As i]so<f>r is a one-to-one continuous map of
the compact space BcardA onto its image, it follows that ^(0r(O

cardA)) is homeomorphic
to 0c a r d\ Therefore 0r(O

cardA) is also homeomorphic to 0cardA. So G contains a
homeomorphic copy of Ĥ rdA But icardA = V(G), and so S(G) ̂  w{G). So once again
we have 8(G) = w(G), as required.

Remark 2-5. Theorem 2-4 is the best possible in the following sense: there exists a
group G with w(G) = No, but S(G) = 1. The compact group T has this property,
as T contains 0, but T does not contain a copy of I2. This is so since dim (T) = 1 and
dim (I2) = 2. Further, observe that for each positive integer n, M>(T") = Xo and
c?(Tn) = n. I

As a corollary to Theorem 2*4, we have the following surprising result.

THEOREM 2-6. Let G be an infinite compact connected Hausdorff group tvith weight
w(G) > Ko. Then G contains a homeomorphic copy of every compact Hausdorff group of
weight w(G) or less.

Proof. Let H be & compact Hausdorff group. That G contains a homeomorphic
copy of H is clearly true when H is finite. So without loss of generality, assume that
H is an infinite compact Hausdorff group of weight w(H) ^ w(G). By the proof of
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theorem 1 of [2] we see that H is topologically isomorphic to a subgroup of Sw{-H),
where S is the product n»-iSU(m) of special unitary groups. As each SU(w)
is a subspace of ix°, so too is 8. Therefore H is homeomorphic to a subspace of
(OK.)"*") = D"*"', which is in turn a subspace of r ( G ) . By Theorem 2-4 this implies
that H is homeomorphic to a subspace of G.

Remark 2-7. (i) Note that the condition that G be connected cannot be dropped
in Theorems 24 and 26. For instance, if G is a totally disconnected group, then it
contains no connected subspaces. (ii) Also, the condition that the weight of G be
strictly greater than Ko cannot be dropped, because if G = T, then w(G) = Ko, but
G does not contain even T2, which has weight Ko. I

We now generalize Theorem 2-4 to connected locally compact groups.

THEOREM 2-9. Let G be a connected locally compact Hausdorff group with weight
w(G) > Xo. Then 8(G) = w(G).

Proof. Using the Iwasawa structure theorem, ([11], p. 118), G is homeomorphic
IRn xK where K is a connected compact subgroup of G. Note that R™ contains I" but
not D"+1, and so it is clear that 8(G) = n + 8(K).

As w(G) = max {Ko, w(K)} is strictly greater than Xo, w(G) must be w{K) which is
strictly greater than Ko. So from Theorem 2-4, 8(K) = w(K), and hence 8(G) = w(G)
as required. I

3. Consequences of the main result

In this section, we show that an infinite compact Hausdorff group, G, contains a
Cantor cube, and more particularly, the product D^<G). From this it is easy to deduce
that G maps onto 0w(G).

THEOREM 3-l. Let G be an infinite compact Hausdorff group. Then G contains a
subspace homeomorphic to O!f<G).

Proof. From a result of Mostert[12] it can be deduced that G is homeomorphic
to Go x G/Go, where Go is the connected component of the identity of G. So
w(G) = m&x{w(G0), w(G/G0)}. But G/Go is a compact totally disconnected group and
so, by ([5], §9-15 and [6], 28-58), is N homeomorphic to B%iG/G°K

As Go is an infinite compact connected Hausdorff group, from Theorem 2-4 it
contains a subspace homeomorphic to Dw(Go). If w(GQ) > Ko, then, as I contains 0>2,
|w(G0) contains O^(G<)). If w(G0) = Ko, then Go is metrizable, and so contains a subspace
homeomorphic to I, which in turn contains the Cantor space B£° = D^<Go). So Go

contains a subspace homeomorphic to D"<Go>.
Putting these results together, we see that G contains a subspace homeomorphic

t o D 1 " ' 0 0 ' X ^w<-G'Go) = [[])max{M;<G0),ui(G/G0)} _ |TJ)W(C) |
2 2 2 2

Our final result shows that each compact Hausdorff group, G, has |")<G) as a
quotient space.

THEOREM 3-2 ([9], chapter 24, §145). If G is an infinite compact Hausdorff group,
then there is a continuous map from G onto Q"1*0'.

Proof. Note that G is a normal space. From Theorem 31 , G contains a subspace
homeomorphic to O^(G>, which is a closed subset of G.
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The Cantor space B£° can be continuously mapped onto I, from ([7], §15-3). Hence
(G)

 = OMG) m a p s continuously onto tiw<G). Finally, using Tietze's theorem,
there exists a continuous map from G onto iw(G).

Remark 33. We have shown in the proof of Theorem 31 that if X is a compact
Hausdorff space, then (i) implies (ii), where

(i) X has B™ as a subspace;
(ii) there is a continuous mapping of X onto lm.
Juhasz, ([8], theorem 3-18), shows that condition (ii) is equivalent to various other

conditions. One might ask if (ii) implies (i). Juhasz's result suggests that this is likely.
However, it is false. To see this, we observe that the Stone-Cech compactification /?N
of the discrete space of natural numbers M has property (ii) but fails to have
property (i). As ic is separable ([1], §4-19), there exists a continuous map <f> of f̂J onto
a dense subspace of lc. Therefore <f> extends to a continuous map of ftN onto 0c. So (ii)
is true for m = c. To see that (i) is false it suffices to observe that every infinite closed
subspace of fiN has cardinality 2C ([14], theorem 3-3). So /?N does not contain the
Cantor space B£°, as card B*0 = c. Hence /UN does not contain the Cantor cube O!;.
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