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Free Compact Groups V: Remarks on Projectivity

K. H. Hofmann, S. A. Morris

Abstract. In a category with a grounding functor into a base category (such as sets, pointed spaces pointed
compact Hausdorff spaces) free objects are projective—provided projectivity is defined relative to a class of epics
which have right inverses in the base category. This problem arises for the category of compact groups over the
category of pointed compact spaces. The epics in question are continuous group homomorphisms which have a
continuous base point preserving cross section. Any deeper understanding of the relation between freeness and
projectivity is, therefore, based on an understanding of these morphisms, and their study is the main objective of
this article. We show among other things that a morphism of compact groups onto a compact connected abelian
group C which has a continuous cross section has a homomorphic cross section and that this is definitely false
for many simple not simply connected compact Lie groups €. Hence the former are homomorphic retracts of
free compact groups while the latter definitely are not.

0. Freeness versus projectivity for compact groups

The category of compact groups provides an excellent example for the interplay
between category theoretical concepts and procedures on the one hand and methods which,
on the other hand, are characteristic for various concrete mathematical domains such as Lie
group theory, representation theory, harmonic analysis, and algebraic topology. In a series of
papers [4, 7, 8. 9. 11] we have illustrated what this means by discussing free compact groups.
Their definition is given in purely category theoretical terms through the left adjoint of the
grounding functor from the category of compact groups into the category of pointed topological
spaces, and their existence can be ascertained by invoking the Left Adjoint Existence Theorem.
While free objects in the catgeory of groups, i. e., the classical free groups, are somewhat bland
as regards their structure theory, free compact groups, notably those over connected spaces,
turn out to present rather subtle structural features. The free compact abelian groups form an
important ingredient (8], and due to PONTRYAGIYN duality, they are completely understood [7].
In the discrete case, free objects and projective objects are the same. We have pointed out [7]
that this fails in the compact case where, once again, the situation is best understood on the
level of the abelian compact groups.

Homological algebra, as one example, has emphasized the significance of projectivity.
Therefore we want to understand projectivity in its relationship to freeness as thoroughly as
possible for the category of compact groups, and the following discussion is a contribution to
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this topic. !

Let us begin with a closer look at the relationship of freeness and projectivity in the
categories most familiar, e. g. that of [abelian] groups. If F X is a free [abelian] group generated
by set X € FX and f: A — B is a surjective morphism of [abelian] groups. If u: FX — B is
a morphism, then by the surjectivity of f, the set f~'(u(z)) is nonempty for all z € X and
thus we select an element a(z) in it. By the freenes of FX, the function a: X — A extends
uniquely to a morphism v: FX — A. The morphisms fov and p agree on all r € X, hence
on all of FX since X generates FX. Thus FX is shown to be projective. Clearly, in this
construction we have used the Axiom of Choice. What if, for some reason—self-imposed or
otherwise—we can’t? One quick remedy would be that we focus on those morphisms f: 4 — B
only, for which we know that we can select, for each element b € B and element o(b) € f~1(b).
Thus projectivity should perhaps be formulated only relative to a certain class of epimorphisms
f. and this is what turned out to be useful in homological algebra anyhow. This is the time for
a precise definition and a somewhat more formal investigation of the procedure we described.

Definition 0.1, Let £ denote a class of epics in a category C. An object P in C is called
an £ -projective and simply a projective if € is the class of all epics if for each f: 4 — B {from
£ and each morphism u: P — B thereisa v: P — A such that p = fv.

Now we analyze the phenomenon of the projectivity of free groups carefully in category
theoretical terms: Suppose that U:C — B is a faithful “grounding functor”. In our concrete
situation C would be the category of [abelian] groups and B the category of sets with the
forgetful functor U. We say that a morphism f: A — B in C is B-split if there is a morphism
o:UB — UA in B such that (U f)o = idyp. Trivially, the retraction Uf is epic and since U is
faithful, f is epic. Let £ denote the class of B-split morphisms. If C is the category of [abelian]
groups and B the category of sets, and if the axiom of choice applies, then every surjective
morphism is B-split. Now the general background for our initial discussion is the following:

Proposition 0.2.  Suppose that F:B — C is left adjoint. Then FX is £-projective for the
class £ of B-split morphisms.

Proof. Let nx:X — UFX denote the front adjunction and set a = o(Up)py: X — UA.
The universal property of adjoints yields a unique morphism v: FX — A such that a = (Uv)nx.
Now we have

(Unnx = Uf)o(Upnx = (Uf)a = (Uf)Uvinx =U(fv)nx.

The uniqueness in the universal property of the adjoint now yields u = fv. This proves the
Proposition. ]

The following diagrams may be helpful:

nx
X — - FX FX
°l v lUu o~ l"
— —
UA ———— UB A —— B.
idpa e idg I

UVA ———— UB
vy

! According to the objectives of these proceedings we want to illustrate the working of category
theoretical concepts in concrete categories, at least in part, on a level accessible to a general reader, perhaps an

educated graduate student.
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We note that retracts of £ -projectives are £ -projective. Indeed if we have morphisms
7P — Q and p:Q — P with 7p = idg, and if P is £-projective, then @Q is also an £-
projective; for if u': Q — B is given, we set u = u'w, apply Propaosition 0.2 to get a v: F X — A
with fv = u = u'w and obtain v' = vp: Q — B such that fv' = p'wp = y'. It then follows from
Proposition 0.2 that any retract of a free C-object FX is an £-projective. On the other hand,
by a fundamental property of adjoints, for every object C of C we have the back adjunction
ec: FUC — C which is £-split since (Uec)nue = idyc. Hence if C is an £-projective, then
there is a v:C — FUC such that ecv = idg. Thus every £-projective is a retract of a free
object. We summarize

Corollary 0.3. Let F: B — C denote a left adjoint of a faithful grounding functor U:C — B.
An object P of the category C is an € -prajective for the class of B -split epics if and only if it
is a retract of a free object FX . =

We are interested in the following application: Let C = KG denote the category of
compact groups and B the category of pointed spaces and base point preserving maps. Then the
B-split morphisms f: 4 — B are those morphisms of compact groups which have a continuous
cross section.

We introduce precise terminology:

Definition 0.4. A morphism of compact groups f: 4 — B is said to be topologically split
or is said to split topologically if there is a continuous base point preserving function 0: B — 4
with of = id4. Also we shall say that o is a continuous cross section for f. A morphism
f:A — B is called split or is said to split if there is a morphism s: B — A of compact groups
such that sf =id,. ]

A morphism f: 4 — B is topologically split, if and only if there is a compact subspace
X of A4 such that the map (n.h) — nh: N x X — A, N = ker f, is a homeomorphism. Then
X is homeomorphic to B under f|X:X — B and A is topologically a product of N and B.
Likewise, f: A — B is split if and only there is a compact subgroup H in A such that 4 is the
semidirect product NH: we shall review this situation in greater detail in Section 2 below.

Topologically split morphisms are not as rare as one might think at first. MOSTERT’s
Cross Section Theorem (see e. g. [12), Appendix II, 1.12, pp. 317) shows that every morphism
f:A — B of compact groups is topologically split if B is zero-dimensional. But there are even
abelian compact groups such that the quotient morphism G — G/Gy modulo the identity
component is not split (while it is topologically split by the preceding remarks) (see e. g. [5]).

After these remarks, for compact groups. we have to consider two kinds of projectives:
(i) The E-projectives for the class of topologically split morphisms, and (ii) the projectives,
period.

We have a pretty good idea of the latter if they are connected. In fact we shall review
the theory of connected projectives in Section 1 and amplify the known result that every com-
pact connected group has a projective cover whose structure we know. This projective cover is
extremely helpful in the general structure theory of compact connected groups and serves as a
substitute in the case of infinite dimensional compact groups for the Lie algebra and the expo-
nential function. Our understanding of the £ -projectives, however, depends in large measure on
our understanding of topologically split morphisms. Thus category theoretical considerations
lead to an internal problem on the structure of compact groups and their morphisms, namely,
the study of topologically split and split morphisms. Section 2, therefore, is devoted to the
splitting of morphisms, and Section 3 to the study of topologically split morphisms. We have
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noted, that all morphisms onto zero dimensional groups are topologically split. For connected
compact groups there is a certain tendency for topologically split morphisms to be split. This
is correct {although nontrivial) for compact abelian groups. As a consequence, we shall show
that every compact connected abelian group is an £-projective in the category of compact
groups. This is contrast with the rather special structure of the abelian connected projectives
which are exactly the duals of rational vector groups. In the context of free compact groups
£ -projectivity of all compact connected abelian groups implies that every such group is a ho-
momorphic retract of some free compact group according to Corollary 0.3. For semisimple Lie
groups there are topologically split morphisms which are not split. The examples discussed in
Section 3 are rather instructive. Perhaps they tell the story even better than the theorems. The
obstruction seems to be in the first homotopy, but this is not sufficient to explain everything. In
particular we shall show that for a simple connected compact Lie group G to be &-projective
it is necessary that the fundamental group m(G) be trivial or has exponent 2 or 3. In particu-
lar, this means that a simple compact connected Lie group which is not simply connected and
whose fundamental group does not have exponent 2 or 3 cannot be a homomorphic retract of
a free compact group. We shall give a precise characterization of topologically split morphisms
of isotypical semisimple compact connected groups; these are the building blocks from which
arbitrary compact semisimple groups are constructed.

For all of this we need a recall of some general facts on the structure of compact
groups. This material will be discussed in Section 1.

1. The projective cover of a compact connected group

Let us begin by recording some background material concerning compact connected
groups.

Background on the structure of compact connected groups

For easy reference we record the following facts (see [10]).

A Lie algebra is said to be compact if it is the Lie algebra of a compact Lie group. If
it is semisimple this is tantatmount to saying that its Cartan-Killing form is negative definite.

An ideal of an ideal in a Lie algebra need not be an ideal, but this is the case for
compact Lie algebras. As a consequence of this fact and the fact that every compact group is a
projective limit of Lie groups, if G is a connected compact group, IV a connected closed normal
subgroup of G and M a connected closed normal subgroup of N, then M is normal in G.
The class of all compact connected groups together with morphisms with normal image form a
category KGN within the full subcategory KCG of compact connected groups in the category
KG of all compact groups and continuous group morphisms.

An epic in the category KG of all compact groups is surjective by a theorem of
POGUNTKE [14]. Any epic in KCG is trivially in KGN.

If f:G — H is a surjective morphism of compact groups and H is connected, then
f(Go) = H where Gy as usual denotes the identity component of 1 in G. (Indeed H/f(Go).
as a homomorphic image of G/Gy, is totally disconnected.)
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In the class of all simple compact Lie algebras (i. e., simple Lie algebras which occur
as the Lie algebras of compact Lie groups) we consider a set £ of simple compact Lie algebras
which contains for each simple compact Lie algebra exactly one isomorphic copy. Then £ is a
countable set, well determined up to an isomorphism of each member.

We say that G is isotypical (of type s)if every simple homomorphic image of G has 5
as Lie algebra. It is a fact that any compact connected simple normal subgroup of an isotypical
compact group of type 5 has s as its Lie algebra. More precisely, the following result is a part
of the structure theory of compact connected groups (see for instance {1], [2], [5]).

Proposition 1.1. (i) For any compact connected group G. for each s € L there is a
fully characteristic largest semisimple isotypical subgroup SsG of type 5. and the commutator
subgroup G’ is the quotient of [[,co SsG modulo a zero-dimensional subgroup of the center
[ 255G

(ii) The assignment G — S,G is the object part of a functor of the category KGN of
compact connected groups and morphisms with normal image into the full subcategory category
of compact connected semisimple isotypical groups of type s.

(iii) The assignment G — ZoG, where ZoG is the identity component of the center
of G is the object part of a functor from KGN to the category of compact connected abelian
groups.

(iv) The assignment G — G' is the object part of a functor from the category of all
compact connected groups and continuous morphisms into the category of all compact semsimple
groups and continuous morphisms.

u

We shall call S;G the s-component of G. For a morphism f:A — B in KGN we
call S;f: 4, — B, the morphism obtained by restriction and corestriction the s-component of
f.

Let Cs.X denote the closed subgroup generated by all SG with s’ # 5. The simply
connected, respectively centerfree (adjoint) compact Lie group with Lie algebra s will be denoted
L., respectively, K.

We notice:

Proposition 1.2. (i) For any compact connected group G and any s € £ we have G' =
CsG-S:G and G = ZyG-CsG-S:G.

(ii) The Sandwich Theorem. There is a unique cardinal ¥(s.G) and there are sur-
Jective morphisms LY 5.6 = KX uhose kernels are totally disconnected central
subgroups. the first one of Z(Ls)X*C) the second one of Z5,G.

(iii) For each s € L one has an isomorphism

1) 025,G = gZG-CsG : SiG[Z5,G — G/(2G-C,G).
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The situation is best illustrated in the diagram
Ll:(s,G) 3

I\':‘(‘:G)

ZL;“(‘yG) Y S5 X

{1}

The Sandwich Theorem tells us in essence the structure of the s-component S;G of
G; it depends only on the cardinal R(s.G) and a closed subgroup D of Z(L¢)R®9),

On projective compact groups

We have described the projectives in KGN, The following observation shows that
they remain projective in KG.

Proposition 1.3. (i) Every projective P in KGN 1is a projective in the category KG of all
compact groups.

(ii) Every group Ax HjeJ S, with a compact abelian group A with A a rational vector
space and with simply connected compact Lie groups S; is a projective in KG.

Proof.  For a proof of (i) let e: A — B denote a surjective morphism of compact groups and

f:P — B a morphism from a projective in KGN into B. Then B' def im f is a compact
connected subgroup of B since P is connected. Let A’ = e"!B’' and let ¢' = e|A": 4' — B’
denote the restriction. Then e’ is surjective. Since B’ is connected, e'(A}) = B'. Now
eo = e|Aj: Ay — B’ is a surjective morphism of compact connected groups and the corestriction
f': P — B’ is surjective, hence is a member of KGN. Since P is a projective in KGN there is
a F': P — Ay with f' = egF'. Then the coextension F: P — A of F' satisfies f = eF. This
shows that P is projective as asserted.

(i) In {2], Volume II, pp. 81ff. it is shown that the groups listed are projectives in
KGN. Then they are projective in KG by (i). =

We focus on one functorial property in KGN, namely, the existence of a projective
cover. (See [2] and [9].) A portion of the following result was formulated in Proposition 24 in
[1 1):

Proposition 1.4.  There is a functor P: KGN — KGN and a natural morphism 7g: PG —
G such that the following properties are satisfied, where AG = kerrg:
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(i) Given any surjective morphism e: 4 — B of compact groups with connected B and
any morphism f: PG — B, then there is o morphism ¢: PG — A with eg = f. In other words,
PG is projective in KCG.

(ii) AG is a compact zero dimensional ebelian group. If f: X — PG is any morphism
of compact connected groups such that TG o f is surjective, then f is surjective. In other words.
7 i3 co-essential. The assignment G — AG i3 the object portion of a functor from the category
KGN to the category of compact zero-dimensionel abelian groups.

(iii) The ezplicit form of PG is given by

(2) PG = PZ,G x [ £29.
sEL
(3) PZ:G =(Q8 Z,G)™

(iv) If N is a connected compact normal subgroup of a compact connected projective
group G . then there is a connected compact normal subgroup H of G such that G is the direct
product of N and H. In perticular, N and G/N = H are projective.

Proof. We start with (iii) and prove the existence of the functorially determined exact
sequence
(4) 0— A(G) 25 PG IS G — 0.

By Proposition 1.1(iii, iv), the assignment G — ZoG x G’ is the object portion of a
functor KGN — KGN. By 1.3(ii), the group PZyG is projective in KGN and G — PZ,G is
a functor. The definition of the s-component SsG of a compact connected group G is functiorial
on KGN by Proposition 1.1(ii). By the Sandwich Theorem 1.2(ii) we have a morphism

166 PS,G £ Y9 5,6

with totally disconnected kernel. From 1.3(ii) again, PS;G is projectivein KGN. If f:5,G, —
SsG> is a morphism, then the morphism f o 7, lifts to a morphism Pf: P5,G, — PS,G,; and
since 75, is a monic in KGIN, this lifting is unique. It follows quickly that G ~— S;G +— PS:G
is a functor. Therefore, finally, the assignment

G~ PG PZyx [] PS:G
sel

is functorial on KGN. Morover, we know that there is a compact zero dimensional group
D = Z,G NG’ such that G/D = (Z,G)D/D x (G'D)/D. Also, G'/Z(G') = [[,c K+ .

Hence if we let C denote the compact zero-dimensional abelian normal subgroup DZ(G'), then

G/C = (2,6)C/C x [] K&
€Ll

The natural morphism

f:P2,G x [[ Li*® = (z6)C/C = ] K39

se€l sc€l
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lifts across the quotient morphism

G = (ZG)C[C x [] K&
5€L

to a unique natural quotient morphism
¢: PG -G

with zero-dimensional compact central and functorially determined kernel A(G). In particular,
76 is epic-monic in KGN. Thus we have a functorially determined exact sequence (4) with a
projective PG.

In order to finish (ii) let f:X — PG denote any morphism of compact connected
groups such that 7, o f is surjective, Then (im f)A(G) = PG. Now K def (im f) N A(G)
is a central subgroup of PG, and the connected group PG/K is the semidirect product of
the normal totally disconnected group A(G)/K and the connected group (im f)/A . Hence
A(G)/K = {1}. Thus A(G) € im f, whence im f = PG.

(iv) From (iii) we know that

G =2,G xG' where G' = H L?“'G)
sEL

and where Z,G is the character group of a rational vector group. Now N is a connected
compact normal subgroup of G so inc: N — G is a KGN-morphism, and thus ZoN C Z,G
and SsN C 5:G by 1.1(ii, iv). Thus it suffices to prove the assertion for the abelian and the
semisimple isotypic case. But if G is abelian, then the surjection f:G — G splits since G
is projective, and this suffices in the abelian case. If G = LY then PG, = (Pf)(G) (by (ii)
above) is isomorphic to LY ; we may assume PG, = LY. Foreach y € Y and z € X the

map fy: &f pry(Pf)copr,;:Lg — Ly is either the constant morphism 0 or and automorphism.
Let U = {zr € X|(Vy)fy- =0} and V = {z € X|(y)fy: # 0}. Then X = UUV (disjoint
union!) and we identify LY and LY in the obvious fashion with subgroups of LY. Now
LY Cker Pf and (Pf)|L} is injective. It follows that LY = ker(Pf) and H = L}  is 2 normal
complement. Now N = ker f = ker7g,(Pf) = (Pf)"'Ag,. Since N is connected and Ag, is
totally disconnected by (ii) above we have (Pf}(N) = {1}, and since Pf is surjective by (ii)
we conclude Ag, = {1}, 1. e., 7, is an isomorphism and G, is projective. Thus we may write
PG, = G, and (Pf) = f whence N = LY. The assertion is proved in the isotypical case and
thus for the general situation by the preceding arguments.

]

Corollary 1.5. The assignment G — PG is the object part of a self-functor KCG — KCG

of the category of compact connected groups and 76: PG — G is a natural transformation of
P:KCG — KCG to the identity functor of KCG.

Proof. Let f:G — H be a morphismin KCG. Now PG is projective in KG by Proposition
1.3(1) and 7y: PH — H is surjective. Hence there is a morphism Pf: PG — PH such that
7#(Pf) = frg. But ty is monic in the category KCG of compact connected groups because
its kernel is totally disconnected by Proposition 1.4(ii). Hence Pf is uniquely determined by
this equation. =

Notice that we do not assert that G — AG is functorial on KCG.
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Definition 1.6.  For any compact connected group G we shall call 75: PG — G the projective
cover of G.

2. Splitting almost split groups

Suppose that G is a topological group with a subgroup H and a normal subgroup
N. The inner automorphisms by elements of H induce automorphisms of N and, as a
consequence, the semidirect product Nx H of N by H is well defined with multiplication
(m,h)(n.k) = (m(hnh™!).mn). Let the functions NN H — Nx H and u:Nx H — G be
defined by é(d) = (d7'.d) and g(n.h) = nh. Then 6 and y are morphisms of topological
groups and the sequence

(+) 0-NnH L NxH L5 G—0
is exact except possibly at G where it is exact if and only if NH = G.

Definition 2.1. A topological group G is said to be almost split over a normal subgroup N
if there is a subgroup H such that the sequence (*) is exact, NN H is totally disconnected and
# is an open morphism. The group H then is called a near complement of N. A morphism
f:Gi1 = G3 of compact groups is said to be almost [directly] split if ker f has a [normal] near
complement in G3. ]

The theory of connected compact groups is full of almost split situations as we know
from Section 1. We shall make this precise:

Proposition 2.2.  Let f:G — G, be a surjective morphism of compact groups onto a compact
connected group with kernel N. Then G contains ¢ near complement H whick is normal if
G is connected. In particular, every epic in the category KCG of compact connected groups is
almost directly split.

Proof.  Suppose first that we have shown that the identity component Gy contains a near
complement H for NNG,. Since G, is connected we have f(Go) = G2. Hence for each g € G
thereis a go € Go with f(g) = f(go) whence gg;! € N and as go € NH we have g € NH ,i.e.,
G=NNH.But NNH =(NNH)NH is totally disconnected since H is a near complement
in Gy for NN Gy. Hence H is a near complement in G for N.

It suffices now to assume that G is connected and to show that N has a normal
near complement H. The map Pf: PG — PG, is surjective by 1.4(ii). Hence the identity
component PN of its kernel is projective and has a direct complement PH by 1.4(iii). Also
7G(ker(Pf) = ker f = N, whence 7g(PN) = N. We set H = 16(PH). Then G = 76(PG) =
NH and 75 (NNH) = 15 (N)N75'(H) = (PN)AGN(PH)Ag. If Ag(N) is the projection of
Ag into the direct factor PN and Ag(H) is defined accordingly, then both of these groups are
totally disconnected central and (PN)A C (PN)Ag(H) and (PH)(Ag C Ag(N)(PH) and
both of the products on the right sides are direct. It follows that 75! (N NH) C (PN)Ag(H)N
Ag(N)PH) = Ag(N)Ag(H), and this last group is totally disconnected. As a homomorphic
image of a totally disconnected compact group, N N H is totally disconnected. This proves the
assertion. ]
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Therefore, we shall now be concerned with the following question: When can a
near complement be replaced by a complement? Indeed, it is sometimes possible to find a
subgroup A in G such that G actually is isomorphic to the semidirect product of N and A.
This question was investigated in {3]. For a formulation of the relevant result we recall that
a function ¢:H — N between topological groups for which there is an automorphic action
(h,n) = hn: H x N — N of H on N is said to be a cocycle if it is continuous and satisfies

c(hk) = f(k)(k-f(k)) forall h ke H.

Proposition 2.3.  Suppose that the sequence (=) is ezact and p is open. Then the following
conditions are equivalent:
(1) There is a subgroup A of G such that (n.a) = na: N x A — G is an isomorphism of
topological groups.
(2) There is a subgroup D of N x H containing imé such that (N x {1})ND = {(1,1)}.
(3) There is a cocycle c:H — N with respect to the action under inner automorphisms
extending the identity function HNN - HNN.

If also H is normal and connected, if HN N is totelly disconnected, and conditions (1,2,3) are
satisfied. then h — c(h)™': H — N is a morphism eztending the map d » d"": NNH — NNH.

Proof.  For the details see [3]. The relation between D and A is given by A = u(D) and
D = u'(A). The relation between D and c is given by D = graphc, and A = {c¢(h)"'h|h €
H}. =

One of the principal application of this Proposition is the following result, in essence
contained in [3]:

Corollary 2.4. Suppose that the compact group G has a compact connected semisimple
normal subgroup N and an abelian central subgroup H such that G = NH. Then there is
compact abelian subgroup A= G/N in G such that (n,a) — na:N x A — G is an isomorphism
of compact topological groups.

In particular, if G 1s a compact connected group, then G is the semidirect product of
G' and an abelian group A= G/G'.

Proof. Any maximal torus T of N is a product of circles and contains NNH . Since products
of circles are injective in the category of compact abelian groups, the inclusion NN H —» T
extends to a morphism ¢: Z — T C N which is needed for the splitting according to Proposition
2.3. This applies, in particular to any compact connected group G with its commutator subgroup
N = G' giving a complement 4 & G/G', where H = Zp(G) is the identity component of the
center. L

We shall now investigate circumstances under which semidirect splittings are respected
by morphisms.

Proposition 2.5. If G, is a connected normal subgroup of G2 and G} A, is a semidirect
splitting, then there is a closed subgroup A, in G, containing A, such that G, A, 1s a semidirect
splitting of G2.

Proof. There is 2 morphism ¢;: Zo(G1) — G] extending the identity on G| N Zy(G,) such
that A4, = {cl(z)"12|z € Zo(Gl)}. Let D = Glz N Zo(Gz) and let dz = d'z2' € DZo(Gl) with
d.d € D, z, 2 € Zo(Gy). We notice that G5 N G; = G{: This is true for Lie groups where
it is readily verified on the Lie algebra level; it follows by approximation in the general case.



K. H. Hofmann, S. A. Morris: Free Compact Groups V: Remarks on Projectivity 187
Therefore, c1(z')e1(2)™? = c1(z'27!) = ¢y (d'~1d). Since

d~'d =227 € DN Z4(G,)
= Glz n Zu(Gz) n Zo(G1) = Glz n G1 n Zo(Gl)
= G\ N Z4(Gy).

we have d'~'d = c(d'"'d) = c1(2')ar(2)7?, i. e., dei(z) = d'c;(z'). Hence c extends to a
morphism ¢: DZs(G,) — G} via ¢(dz) = de(z) and ¢(d) = d for d € D. Now let T be
any maximal torus of G, containing c,(Zo(G])). Since all maximal tori of G» contain D,
we have imc C 7. Since T as a maximal torus in a semisimple compact connected group
is a product of circles in view of the Sandwich Theorem, the corestriction ¢: DZ4(G,) = T
extends to a morphism ¢z: Zo(G2) — T C G which is agrees with the identity on D. Now
Ay = {c2(2)7 12|z € Z9o(G,)} is the desired group. =

Proposition 2.6. If f:Gy, — G, is a surjective morphism of compact connected groups,
then for every semidirect decomposition G, = GyAz of G, there is a semidirect decomposition
G1 = GiA1 of Gy with f(A1) = A;. (Of course, f(G}) = G} is automatic).

Proof. Let N=G{Nkerf. If G/N decomposes semidirectly into
(G1/N)(A/N) with f(A4) = 4.,

then 4 = AgN. As a normal subgroup of the semisimple compact connected group G, the
group N is of the form NoZ with some compact abelian totally disconnected group Z which
is central in G and a semisimple compact connected group Nj.

We write 49 = NoZo(Ao) and have A = NyZZ¢(A,) with an abelian group ZZy(Ag)
which is central in 4. Then we find an abelian compact group A* in A such that A = NgA® is
semidirect. Let A; be the identity component of A*. Now N = No(N N A*) semidirectly, and
A = NA, semidirectly. Now G = G14; and GiNA; CGiNANA; = NNA; = {1}. Hence
G, is decomposed semidirectly in the form G} A, and f(4;) = f(NA;) = f(A) = A;. Thus we
may assume from here on that G; Nker f = {1} i. e, that f|G}:G} — G} is an isomorphism.

Now let 4; = f~!(Az). If g € GiN A, then f(g) € f(G})Nf(4)) = G,N A, = {1}.
Hence g € Gy Nker f = {1}, and thus G = G} 4, is a semidirect product and f(4;) = A4,. =

3. Topologically split epics

Our preceding results allow us to draw the following conclusion on topologically split
morphisms of compact connected groups.

Proposition 3.1.  For a morphism f:G1 — G; of compact connected groups the following
conditions are equivalent:

(1) f splits topologically.
(2) The semisimple part
f:Gi -Gy fle)=g¢

and the abelian part

F:G1/G) = G./G,, F(9G}) = f(9)G
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both split topologically.
Proof. In view of Proposition 2.6, clearly (2) implies (1). We prove that (1) implies (2).
We have semidirect decompositions G; = G} % 4;, j = 1.2, with f(41) = 4, by Proposition
2.6. Let 0:G, — G, denote a topological cross-section for f. Define ¢':G3 — G} and
a:ds — A; by ¢'(g) = pra a(g) for g € G, and a(a) = pry, o(a) for a € A;. Then fo'(g) =
ferg, o(9) = pig, fo(a) = prgy(9) = ¢ and fa(a) = fpry, o(a) = pra, fo(a) = pry,(a) = a.
Hence ¢' and a are the desired topological cross-sections. n

The situation unfortunately is more complicated for splitting in the group sense.
Suppose that f:G; — G» is a split morphism of compact groups with a homomorphic cross
section s:G2 — G;. Then s(G,) C G, and the restriction f':G] — G3 and corestriction
s':G, — G satisfy f's’ = idg,. Hence f' splits. We let S:G»/G; — G1/G; be the induced
morphism. Then F5 =idg,/q; and thus F splits, too.

Some counterexamples

However, the converse may be false. In order to understand more clearly what happens
we prove a lemma:

Lemma 3.2. Let N denote ¢ semisimple compact connecied normal subgroup of a compact
connected group G. There is a unique compact connected normal subgroup M such that G' =
NM and NN M is totally disconnected and central in G. Let Z(M) and Z(N) the centers of
M and N, respectively, end write A = ZoNG'. Then
(i) the following conditions are eguivelent:
(1) G is a semidirect product NB, NN B = {1}.
(2) There is @ morphism a:MZy — N eztending the inclusion map Z(N)N
Z(M)A.
(ii) If o exists as in (2) and 1s surjeciive. then

MONNZ,=Z(M)nZ(N)naA = {1}.

Proof.  The existence of M follows from Proposition 1.4(iv). We note that N N (MZ,)
is totally disconnected in view of the structure theoy, hence is central. Hence N N (MZ,) C
Z(NYNZ(MZy) = Z(NYNZ(M)Z;. f n =mz withne N, m € M, and z € Zo, then
z=m'neMNNZy=G'NZy=A. Hence NN(MZ,) C Z(N)N Z(M)A, and the reverse
inclusion is trivial, so equality holds. The equivalence of (1) and (2) is now simply a consequence
of Proposition 2.3. Thus (i) is proved. For a proof of (ii) note that the surjective morphism
a:MZy — N must map Zy to the identity. Hence a(M N Zy) = {1}. On the other hand,
a(m)=m for m € Z(N)N Z(M)A by (2). Hence (ii) follows. =

Example 3.3. There is a compact connected Lie group G with the following properties:
(i) G/G'=T=R/Z.
(i1} There is a compact connected normal subgroup N contained in G’ such that N isa
semidirect factor in G’ but not in G.
(iii) If f:G — G/N denotes the quotient morphism, then f' splits and the induced
morphism G/G' — (G/N)/(G/N)' is an isomorphism.
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(iv) f splits topologically but not algebraically. In particular, G/N is not an £-projective
in KG for the class of topologically split morphisms.
(v) The smallest example G of this kind has dimension 7 with dimG/N = 4.

Proof. Let L denote a simple simply connected Lie group with cyclic center Z of order n
with generator z. Denote with ¢t € T an element of order n. In the group Lx L x T consider the
central subgroup D generated by the elements (z,z,0) and (1.z.t). Set G=(L x L x T)/D.
Then G' = (L x L x {0})D/D = (L x L)/{(c.c)|c € Z} contains the normal subgroups
N=(Lx{1}x{o})D/D = L and M = ({1} x L x {0})D/D = L, and the diagonal
subgroup C = {(d.d.0)|d € L}D/D = L/Z. We claim that G’ is the semidirect product of
N and H. Clearly NC = G'. In order to show NN C = {1} consider (v.v,w)D € NNC.
Then (u.v.w) € (L x {1} x {0})D N {(d.d,0)|d € L}D = {(z.2™.pt)|]z € L. m.p € I} N
{(d.dz?,p-t)|d € L.p € I} = D which proves the claim.
Also
NnZy=(Lx{1}x{0})D/DNn({1} x {1} x T)D/D
=(ILxZxItNZx2ZxT)/D
=(ZxZx1It)/D=2Z.

Thus NN MZ D NN Zo # {1} if Z # {1}.

Likewise
Mn2Zy=(({1} x Lx{o})D/Dn({1} x {1} x T)D)/D
=(ZxLxZtNIxZxT)/D
=(ZxZx1t)/D=NnN2Z,.

Thus MANNZ, = Z # {1}.

If welet f:G — G/N denote the quotient morphism, then f':G' — G'/N splits by
the preceding. Now G/G' = (G/N)/(G'/N) = (G/N)/(G/N)' by the first isomorphy theorem.
In particular, f splits topologically since G = G'A semidirectly with a suitable abelian group
A= G/G' by 2.4, and thus topologically G = N x C x A.

However, N does not admit a semidirect group complement in G. For a proof we
note that by Lemma 3.2 all subgroups of G complementary to N are classified by a morphism
a:MZ, - N = L extending the identity map of NN MZ, & Z. Then a cannot be
constant if Z # {1}. In this case a is necessarily surjective. Hence by Lemma 3.2(ii) we
have M N M N Zy = {1}, a contradiction.

An £-morphism onto an £ -projective splits. Thus G/N cannot be £-projective.

The smallest example is given by L = SU(2) with Z = {1.-1} of order 2. In this
case dimG=3+34+1=7

]

This example shows, in particular, that there are morphisms which are topologically
split but are not split. One might surmise that this may not occur with morphisms between
semisimple groups. However this is not the case as the following example illustrates:

Example 3.4. There is a surjective morphism f: Gy — G, of semisimple isotypical compact
connected Lie groups which splits topologically but not algebraically. In particular, G is
not an £-projective for the class of topologically split morphisms. One example is given by
G2 = PSU(6) and G, locally isomorphic to SU(6)?.

Proof. We let L again denote a simple simply connected Lie group with nontrivial cyclic
center Z. We consider A = {(z°,z)|z € Z} C L? with a natural number a. Weset G, = L?/A,



190 K. H. Hofmann, S. A. Morris: Free Compact Groups V: Remarks on Projectivity

G, = L/Z. Welet f:Gy — G, denote the morphism induced by the projection p: L* — L
onto the last component. The kernel N then equals (L x {1})A/A = (L x Z)/A = Z. The
unique supplementary normal subgroup is M = ({1} x L)A/A = (Z° x L)/A = L/Z{a] where
Z[a) = {z € Z|z® = 1}. Moreover, NNM = (Z° x Z)/]A = Z/Z[a]. By Proposition 2.3, the
complements for N in G; are characterized by morphisms a: M — N extending the inclusion
NNM — N. Since NNM is nontrivial if Z[a] # Z, any such morphism is nontrivial.
But a nontrivial morphism L/Z[a] — L must an isomorphism, and Z[a] = {1}. Hence if
{1} # Z[a] # Z, such an a cannot exist. Whenever the order of Z is not a prime, a number a
with this property exists. An example is L = SU(6).
On the other hand let us consider the continuous function : L — L? given by 5(v) =
(v°,v). Then po& = idr. Also,if z € Z, then G(zv) = ((2v)%.zv) = (v*.v)(2°.2) € F(v)A
since z is central. Hence & induces a base point preserving continuous function o:G; — G,
given by o(vD) = (v®,v)A with is a continuous cross section for f.
[

The abelian case

However, the abelian situation is radically different:

Proposition 3.5. A topologically split morphism f:A — B of compact connected abelian
groups splits.
Proof. Let 0:B — A denote the topological cross section. We denote with H*(X) =

H*(X,Z) the integral Cech cohomology of a compact space X . The relation fo = idg induces
the relation

H*(o)H*(f) = H'(fo) = H*(idp) = idy-(s): H'(B) — H'(4)

in Cech-cohomology over the integers. We specialice to dimension one and obtain a split exact
sequence

-

0 — ker H'(0) 25 HY(B)— H'(A) >0
R

with the notation ¢° = H'(¢), designating a morphism of discrete torsion free abelian groups.
The dual is a split sequence of compact connected abelian groups

-~

() 0 — H'(A)"—= HY(B)" 25 (ker H'(s))~ — 0.
f.

There is, however, a natural isomorphism G- m (G) between the character group of a compact
connected group and its first integral cohomology group. (See e. g., [13]).) Consquently, by
Pontryagin duality, there is a natural isomorphism H'(A4)™ — A and H!(B)~ — B by which
H(f)" becomes identified with f: A — B. The split exact sequence (}) therefore proves the
Proposition. ]

Before we generalize this result, we need a reduction:
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Lemma 3.6. (i) If f: A — B is a surjective morphism of compact groups and A; is a subgroup
of A with f(A1) = B, then f splits [topologically] if f|A1: Ay — B splits [topologically/.

(ii) If ftA — B is a morphism of compact groups onto a connected group and

fo: Ay — B denotes the restriction, then fy splits topologically if f splits topologicelly and
f splits «f fo splits.
Proof. (i) Let A = ker f. It suffices to find a compact subgroup [subspace] H of A such
that A = KH and (k,h) — kh: K x H — A is a homeomorphism, for then f|H:H — B is
an isomorphism [homeomorphism] and s = j(f|H) !: B — A with the inclusion j: H — A is
the required homomorphic [continuous| cross-section. Now let H C 4, denote a [topological]
complement for K N A; in A;; then KNH =(KNA;))NH = {1} and f(A;) = B implies
KH = A. Thus kh = k'R’ implies ¥~k = h'A"* € HNK = {1},i. e, k= k' and h = }'.
Hence H is a [topological] complement for K in A.

(ii) f splits topologically, then any base point preserving cross-section o: B — A maps
B into Ag, whence fp splits topologically. The second assertion follows from (i) above. u

Lemma 3.7. If fiGy — G, is a morphism with a tepological base point preserving cross-
section 0:G; — Gy and if Hy is any closed subgroup of G2, then the restriction and corestric-
tion f~Y(H;) — H, is a topologically split morphism.

Proof. Since o is a base point preserving cross section of f we know that a(Hz) C f~}(H,).
Hence o restricts and corestricts to a base point preserving map H, — f~!(H:) which is a
cross-section for the morphism f~!(H;) — H> induced by f. [ ]

Theorem 3.8. (i) A topologically split morphism of compact groups f:G, — G2 onto an
abelian connected group splits.

(1) If f:Gy — G2 is any topolagically split morphism of compact groups and T is a
connected abelian subgroup of Ga then the restriction and corestriction Ty = T, Ty = f~3(T)
splits. Moreover, if S is any mazimal connected abelian subgroup of T, then the restriction
S — T splits.

Proof. By Lemma 3.6(ii) it is no loss of generality to assume that G; is connected. Then
by 2.4, the group G; is a semidirect product G'4 with an abelian group A with f(4) = G,
since f is surjective and G, is abelian. As the induced morphism f|A: A — G, is equivalent
to the induced morphism G;/G] — G»/G%, and thus splits topologically by Proposition 3.1, it
splits by Proposition 3.5. Hence there is a compact subgroup B of A such that A = (NN A)B
is direct with N =ker f. Now NB=N(NNA)B=NA=Gand NNB=NnANB={1}.
Hence NB is a semidirect decomposition and the inverse of the isomorphism f|B:B — G
produces the required homomorphic cross-section.

(ii) By Lemma 3.7 , the restriction and corestriction Ty — T is topologically split.
Hence it splits by (i). Thus Tj = NA with N = ker f and an abelian group A = T. Let S
be a maximal connected abelian subgroup of T} containing 4. Then § = (SN N)A4 is a direct
decomposition, and thus the induced morphism § — T splits. Since all maximal connected
abelian subgroups of 77 are conjugate, the assertion follows. u

Theorem 3.9.  Every compact connected abelian group is an £ -projective for the class of
topologically split epics in the category KG of compact groups. In particular, every such group
18 @ homomorphic retract of a free compact abelien group.

Proof. Supposethat P is any compact connected abelian group and f: P — B a morphism of
compact groups. Suppose that e: A — B is a topologically split morphism. Let e1:e7!(f(P)) —
F(P) is a topologically split morphism by Lemma 3.7. Hence it splits by Theorem 3.8(i). If
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s: f(P) — e~} (f(P)) is a homomorphic cross-section for ey, then F: P — 4, F(g) = s(f(p))
satisfies ef = f. This proves that P is a £-projective. The last assertion is a consequence of
Corollary 0.3. [

Reducing topological splittings

In the remainder of the section we shall prove that the topological splitting of a
morphism of compact connected groups f: 4 — B reduces to the topological splitting of the
isotypical components S, fo: Ss4o — SsB. Moreover we shall precisely describe the topological
and the algebraic splitting of the isotypical components.

Throughout the following discussion welet o: B — A denote a continuous cross section
for f.

Since the abelian case is settled, we now turn to the general semisimple case.

Proposition 3.10.  Let f: A — B be a topologically split homomorphism with a continuous
¢cross-section o: B — A, and assume that A= A' and B = B’ are semisimple. Then there is a
continuous. base point preserving map ¢: PB — PA such that
(i) Pfo =idpp.
(i) o7 =Tad.
(i) ¢(tz) = ¢(t)é(z) for all z € PB. t € kerTg. and there is a commauting diagram of
ezact sequences

inc T8
0 - A ——m———— PB

B
N

0 — Ay PA ——

- 0

— 0

where Ay = kertx and where Yy = @|Ap s the restriction and corestriction of ¢.
(vi) The morphism = = PflAs — Ap sphits and 7 = ida,. In perticular, Ay s @
direct product (ker )(im1).
Proof. (i) Let g,:A' = A/Z(A) denote the natural homomorphism ¢ — aZ(A). Then
74 =qaTa: PA — AJ/Z(A) is equivalent to the morphism

I L3 - [T ke
s€L sE€EL

induced by the universal covering morphisms p;j:Ls — K, for j € J in the appropriate
simultaneous index set for both products. We identify 74 with this morphism [];.;p; and
consider the continuous base point preserving function ¢ = g4otp: PB — A/Z(As with the
topological cross section 0: B — A. As a product of simply connected spaces L,, the space
PB is simply connected. Hence every morphism ; = p;¥: PB — L, lifts uniquely to a base
point preserving map ¢;: PB — L, satisfying p;¢; = ;. Hence there is a unique base point
preserving map ¢: PB — PA with m4¢ = 1. Now we compute

78(Pf)¢ = (f/Z(A))7ad = (f/Z(A))¢
= (f/Z(A))qa078 = qBfoTp
= QBTB = 7B.
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Thus g — g~*(Pf)é(g): PB — B/Z(B) is a base point preserving continuous function mapping
the connected space PB into the totally disconnected kernel kermg = Z(B). Hence it is
constant. Thus

(Pf)é =idpg.

(ii) The base point preserving continuous maps o def 746 and 3 def oty satisfy
gaa =ty = gaf by the definition of ¢. Hence ¢ — a(g)"18(g): PB — kergs = Z(A) is a well
defined base point preserving map from a connected space into a totally disconnected one and
is therefore constant. Hence

TA®G =07R.

(iil) The relation 74é(tz) = orp(tr) = o7g(z) = Tad(z) shows that
#(tz)p(z) "t Ekerty = Ay

For each fixed t € Ag the continuous base point preserving function z — ¢(tz)¢(z)~* : PB —
A4 from a connected space to a totally disconnected one is necessarily constant. The base
point 1 is mapped to #(t1)é(1)~! = ¢(t). Thus é(tz)¢(z)™! = ¢(t) = ¥(t) for all t € Ap and
z € PB. Hence (iii) is proved.

(vi) The relation Pf o ¢ = idpp implies 7 o ¢p = ida, by simple restriction and
corestriction. Thus A4 = (kern)(imy) is a semidirect product decomposition. But A, is
central in PA, and thus we have a direct product decomposition. .

Lemma 3.11. For a topologically split morphism f:A — B of compact connected groups
there is a continuous cross section ¢.:S:PB — SPA for the s-component (Pf); and a
continuous cross section 0,:5,8 — S;A for the 5 component fo:S,A — S:B such that

US(SSTB) = (SBTA)¢5 .
Proof. The morphism Pf:PA — PB respects the s-components and may by uniquely

written in the form
[T £e: JT 3% - T 2.
s€l s€EL s€L

If coprszL?(“B) — PB is the natural embedding then

¢s d:':f Prg ¢vcgprs:LN(s,B) - LR(S.A)
is a well defined base point preserving continuous map and
Pf‘¢ﬁ =id: LR(s_B) —_ LR(s,B)

as we see from the commutative diagram

LN(s.B) \ LR(5.4) P LR(s.B)

copr, Pz, PT,

° ! Hset: LN("B)‘

Hsec LX(=5) * Hset: LX)
We now abbreviate Ay = S,(A) = TA(L?("B)) and B, accordingly so that f; =
S.f:As — B,. Let ji:A, — A denote the inclusion. We define ¢ = 0j5: B, — A and
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let 7p .: ':(E’B) — B, denote the corestriction of 75 o copr,. Then oi1p, = 078 copr(sB) =
Tad coprEB) = T4 copr(sA) ¢s = jATA,s0s, and this shows that the image of ¢} is contained in

A,. Hence there is a well defined corestriction os: Bs — A; such that
OsTBs = TA,sPs and ja0s =0jpB,

where the second equation follows from ja0:7Bs = 0.7B,« = 0jBTB,s and the surjectivity of
78.s- Now
JsfeosTB s = f140s7Bs
= fojpTB,s = JBTB,s:

and thus the surjectivity of 75, and injectivity of jg show

fsas =idB, . [ ]

We now concentrate on topologically split morphisms of isotypical groups.

Lemma 3.12. Let x: LY — LU denote a morphism. Then x € Hom(LY,LY) is characterized
by a partial function v:V — Y, V € U and o function a:V — AutL, (au)uev € (Aut Ly

which determine def Xv,a Gccording to

(5) Waher) = Guduew with b= { @) Fuel

Each one of these induces a morphism ZY — ZY by restriction and corestriction.

Proof. For each u € U the composition pr,ox: LY — L is either the constant morphism
0 or else there is a unique element v(u) € Y and an automorphism ay:L — L such that
@y = Pr, 0X 0 COPT,(,). In a diagram:

Ly X v
COPTy (u) Pr.
L ———— L
Let us set V = {u € U| pr,ox # 0}. Then (5) holds. n

Proposition 3.13. (i) Let f: A — B be a surjective morphism of isotypical compact con-
nected groups. Then PA = LX and PB = LY with a simply, simply connected Lie group L
with Lie algebra 5 and sets X = R(5,4) and Y = R(s.B) such that X is o disjoint union
UOY such that we can write PA =LY x LY and have ezact sequences

OAAAL»LUXLY;—'»A—»O

ine Ty

¢ — AB —_—— LY ——————+ B =0

There is a family (ay)yey € (Aut L)Y and a bijection p:Y — Y such that

Pf((gu)uev‘(gy)yEY) = (aygp(y))vey e f2((g")y€Y)
and Pf(A4) C AB.
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(ii) f has a homomorphic cross section s:B — A if and only if there is o subset
V CU. a function (' )yev € (Aut L)V and a function v:V =Y such that

(Ps)((9y)vey) = (xvor ((gy)vey), (a;-ll(y)(gp"'(v)),ey) = ((hu)uey. ("‘;-IX(y)(gp“(y))yey)

with
B = al(guw)) fuev,
v 0 ifuelU\V,

defines a homomorphic cross-section for Pf. and that (Ps)(AB) C Aa.

(iil) f has a continuous cross section 0: B — A if and only if there is a continuous

base point pre.sermng function x: LY — LY such that the function ¢: LY — LY x LY defined by
&(z) = (r(z). f ' (z)) satisfies (Ap) = Aa.
Proof. (i) Since A = As and B = B; are isotypic the abbreviations L = L; and
R(s,4) = X, X(s.B) =Y yield PA = LX and PB = LY. U Z is the finite center of L,
then 64 € ZX and 6g C ZY. Every surjective morphism from a projective object splits.
Hence we now write X = UUY and LX = LY x LY where LY = ker Pf and thus, writing the
elements of PA as pairs (a;.a;) € LY x LY, we have Pf(a;,a;) = fa(az) with an isomorphism
f2: LY — LY which by Lemma 3.12, is necessarily of the form (ay)ycy — (c):,(a,,,(‘,,,)))!,(_:y with
a bijection p of ¥ and automorphisms ay of L. It is clear from the naturality of 7 that
Pf(A4) C Ap. Note that f;((by)yev) = (@, 2y yhs-1(n)

(i) If s: B — A is a homomorphic cross section for f, then Ps is a homomorphic
cross section for Pf. If (Ps)(z) = (a;.a3) then z = (Pf)(Ps)(z) = (Pf)ar,a2) = falaz),
whence a; = f;!(z). Also, a; = x(z) for some morphism x: LY — LY. It follows from Lemma
3.12 that (Ps)(Ag) C A4. It is clear that any morphism z — (x(z). f; '(z)) respecting the
A’s will be a morphism Ps for a homomorphic cross section s: B — A for f.

(iii) Suppose that f has a continuous cross-section. By Proposition 3.11 there is a
continuous cross section ¢ for Pf. Then as in the proof of (ii) we conclude that ¢(z) =
(x(z), f*(z)) with a base point preserving continuous function x: LY — LY

From 3.11 we know ¢(tz) = ¢(t)¢(z) for t € Ap and z € LY, and thxs yields

(x(tz). £ (1)) = d(tz) = $(t)(z) = (x(t). 71 (1)) (x(2). £ (2)) = (w(t)x(2), f5 (t2)).
Thus

(6) xk(tz) = k(t)s(z) forall teApCZY andz€ LY,

where
(s(¥). f71(t)) € As forall te Ap.

Conversely, any base point preserving continuous map of the form z — (x(z), f; ' (z))
respecting the A’s will be the ¢ for a continuous cross section o: B — A for f. This completes
the proof. LI

If f has a continuous cross section, then the group A4 € ZY x ZV is a direct product
of the subgroups kerr = A4 N (LY x {1}) and imy = {(x(z). f; }(z))z € A }.

The problem of converting a topological splitting of a morphism of isotypic groups
into an algebraic splitting, after 3.13, is the following:
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For a continuous function x: LY — LY satisfying (6) find a partial function v:V = Y,
V C U and a function a: V — Aut(L) such that x|Ap = x,,«|AB.

Our Example 3.3 shows that this is not always possible. We shall now render this
example more precise. Let ¥ and U be singleton. Let Apg be a central subgroup of L and set
B = L/Ag. Let a denote a natural number and define x: L — L by x(z) = z%. Then (6) is
satisfied. Set Ay = {(x(z).z)|z € Ap} and A = (L x L)/A 4. The projection Lx L — L
onto the second factor induces a topologically split morphism f: A — B. In order for it to be
split we must find a morphism x:L — L with

(M x(z) = x(z) =2 for z € Ap.

We shall now search for groups L for which there is a natural number a such that (7)
can be satisfied for suitable endomorphism x of L. If Ag = {1}, then the constant x will
satisfy (7). If 2% = z, for all z, i. e.,, A" = {1}, then x = id, satisfies (7). We now look
for those L such that for each nonconstant endomorphism x # id; there is a natural number
a > 1 such that (7) is satisfied. Then x must be an isomorphism because of the simplicity of
L. In particular, z — 2z° has to be a nonidentity automorphism of Ag. The automorphisms
induced on the center of a simple simply connected Lie group are known and catalogued (see
e. g. [15]). They come from automorphisms of the Dynkin diagram; if the center is nontrivial
the automorphism groups induced on the center have order 2 or are (in the case D) isomorphic
to S3. Thus we now inspect the list whether we find outer automorphisms x of L which on
the center induce a map of the form z — z%.

Type An_, represented by L = SU(n), Ap & Z(n), x(z) = 27! = 2* witha = -1
(mod n). If n > 3 then we find always naturel numbers a > 1 with ¢ # =1 (mod n).

Types B and C have no outer automorphisms.

Type D,, n =4.5... represented by Spin(n),

Ap = { 2(2)) fn=0 (mod2),
7Z(4) iin=1 (mod?2)
In the first case, the outer automorphisms y do not satisfy (7) for any a. In the second case
x(z) = z* for any outer automorphism. If a = 2 then (7) is not satisfied.

Types G,, Fy, E7, E5 have no outer automorphisms. The compact simply connected

form L of E; has a center Ap = Z(3) and thus has outer nontrivial automorphisms x with

x(z) = z2.
These remarks allow the following observation:

Example 3.14. Suppose that G is a simple connected but not simply connected compact
Lie group not isomorphic to SO(3), PSU(3), E¢/Z, SO(2m) or a double covering of SO(2m).
Then there is a topologically split morphism f: A — G with A locally isomorphic to G? such
that f does not split. In particular, G is not £-projective for the class of topologically split
morphisms. ]

We summarize:
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Theorem 3.15. Let f:A — B be a topologically split morphism of compact groups and let
B be connected. Let fo: Ag — B denote the restriction to the identity component of A. Then
(i) fo is topologically split.

(ii) The tnduced morphism F:Ag/Ay — B/B' is split.

(iii) Each isotypic s-component (5sfo): Ss(Ao) — SsB 1is topologically split. The morphism
f'+ A" — B’ induced on the commutator groups is topologically split.

The conditions (i), (ii), and (iii) do not imply that f is split. In particular, a topologi-
cally split morphism between isotypic compact connected semisimple groups need not be split. Its
splitting and topological splitting is characterized in Proposition 3.13. in terms of the projective
cover.

(iv) If T is any connecied abelien subgroup of B then the homomorphism f~Y(T) —» T
induced by f splits, as does ils restriction to any mazimal connected abelian subgroup
of f71(T).

(v) Every compact connected abelian group is £ -projective for the class of topologically split
morphisms and therefore is ¢ homomorphic retract of some free compact group. If G s
a simple compact connected Lie group which is an € -projective or, equivalently. which
is ¢ homomorphic retract of a free compact group, then the fundamental group =1(G)
must be singleton or have ezponent 2 or 3. For a precise listing sec Example 3.14. =

It is still possible that any &-projective simple compact Lie group has to be simply
connected. But our choice of x: L — L, x(g) = ¢* will not carry us further than stated in
Example 3.14 and Theorem 3.15(v).
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