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1. Introduction

Varieties of topological groups have been investigated in several papers
((2) and (10)-(13)). In this note we investigate the varieties generated by
classical Lie groups. In particular we show results of which the following is
indicative: The variety generated by the unitary group U(ri) contains U(m)
if and only if m g n. En route we introduce the notion of a variety of topo-
logical Lie algebras which provides a convenient setting in which to answer
our questions.

2. Definitions and preliminary results

A non-empty class of topological groups (not necessarily Hausdorff) is
said to be a variety of topological groups if it is closed under the operations
of taking subgroups, quotients, arbitrary cartesian products and isomorphic
images. The smallest variety containing a class & of topological groups is said
to be the variety generated by <6 and is denoted by V(<#), (or V(G) if <8 = {(?}).

A Banach Lie algebra L is a Lie algebra (over the reals) and a Banach space
such that there exists a constant c such that ||[x.j>]|| ^ c \\ x || || y || for each
x, y e L. If Bh i e I, are Banach Lie algebras and E is a subalgebra of the
product Y[ Bi> t n e n E with the topology induced from the product is said to

be a (locally convex) topological Lie algebra. (Cf. (8) pp. 252, 253 and the
fact that any locally convex Hausdorff topological vector space is a subspace
of a product of Banach spaces.)

A non-empty class of topological Lie algebras is to be a variety of topo-
logical Lie algebras if it is closed under the formation of cartesian products,
subalgebras, separated quotients and isomorphic images.

Note that the " Varieties of linear topological spaces " considered in (3)
and (4) are varieties of topological Lie algebras.

If <t> is a class of topological groups then Qf6 denotes the class of all topo-
logical groups isomorphic to quotients of members of C6. Similarly we define
the operators S, S, Q, C and D where they respectively denote subgroup,
closed subgroup, separated quotient, arbitrary cartesian product and finite
product.
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The operators S, S, Q, C and D are defined similarly on classes of topological
Lie algebras.

We now present two basic theorems, the first is proved in (2) and the second
can be proved in a like manner.

Theorem 2.1. If ^ is a class of topological groups and G is a Hausdorff
group in V($), then G e SCQSD(<#).

Theorem 2.2. Iftf is a class of topological Lie algebras and V($) is the variety
generated by <«, then V(<€) = SCQSD&).

The next theorem, proved in a similar manner to Theorem 4.1 of (4) has
a very useful corollary.

Theorem 2.3. Let %> be any class of topological Lie algebras and let B be a
Banach Lie algebra in V^tf). Then B e QSD(<#). In particular, this is the case
for finite-dimensional topological Lie algebras.

Corollary 2.4. Let ^ be a class of topological Lie algebras of dimension 5̂  m,
for some integer m. Then every finite-dimensional simple topological Lie algebra
L in V(^) has dimension ^ m.

Proof. From Theorem 2.3 we see that L e QSD(%). Using Theorem 3.1
of (7) this implies that L e SD{q>). Finally, noting that L is simple we have
that L e S(^), which ensures that the dimension of L ^ m.

Finally, we mention
Theorem 2.5. Let G be a connected locally compact Hausdorff group. Then

(i) V(G) 2 V(T), where T is the circle group,
(ii) G is compact if and only if V(G) $ V(R), where R is the group of reals,
(iii) G is abelian if and only if V(G) £ V(R),
(iv) If G is compact, then the variety of groups, (14), generated by G is either

the class of all groups or the class of all abelian groups. In the latter case

V(G) = V(T).

Proof. Suppose G is non-compact. Then, in view of § 4.13 of (9), G has
R as a subgroup. Therefore V{G) 3 V(R)=>V(T). If G is abelian, then
Theorem 5.8 of (12) yields that V(G) = V(R).

Now suppose that G is compact. Then by § 4.6 of (9), G has a proper normal
subgroup N such that GfN is a Lie group. This implies (§4.13 of (9)) G/N
has T as a subgroup. Consequently, V(G) 3 V{T). Corollary 3 of (2) states
that a locally compact group in a variety generated by compact groups is
compact. Thus R $ V(G).

If G is compact and non-solvable, then the main result of (1) implies that
the variety of groups generated by G is the class of all groups.

If G is compact and solvable, then by Theorem 29.44 of (6), G is abelian.
Therefore V(G) = V(T), and the variety of groups generated by G is the class
of all abelian groups. This completes the proof.
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3. The main results

Lemma 3.1. Let G and {Gx: a. si} be Lie groups. If G is a subgroup of the
product Y\ Ga, then L(G) is isomorphic to a subalgebra of Y\ L(GX), where

ae / aeI
L(G) and L(GX) are the Lie algebras of G and Ga, a e /, respectively.

Proof. Let px be the projection mapping of G into Gx and let px be the
induced homomorphism of L(G) into L(GX). Consider the diagram:

expc

>L(GX)

Clearly it commutes. Since there are enough maps px to separate points of G,
there are enough maps px to separate points of L(G). Therefore the mapping
of L{G) into I~J L(G^, defined to be the product of the mappings px, ae I,

ae I
is an isomorphism of L(G) on to its image.

Theorem 3.2. Let G be a Lie group and L(G) its topological Lie algebra
(that is, the Lie algebra of G given the unique vector space topology it admits).

(i) If H is a Lie group in V(G), then its topological Lie algebra L(H) is in
V(L(G)).

(ii) If L is any finite-dimensional topological Lie algebra in V(L(G)), then
there is a Lie group H in V(G) such that L(H) is isomorphic to L.

Proof, (i) By Theorem 2.1, He SCQSD(G). That is, H ^ f ] G«> w h e r e

each Gx e QSD(G). Then clearly L(GX) e QSD{L{G)). By Lemma 3.1, this
implies that L(H) is isomorphic to a subalgebra of [T L(GJ, and hence is in

V(L(G)). °"

(ii) If L is a finite-dimensional topological Lie algebra in V(L(G)), then,
by Theorem 2.3, L e QSD(L(G)). This implies that there is an H in QSD(G)
such that L(H) is isomorphic to L. The proof is complete.

Corollary 3.3. Let G be a Lie group of dimension n with a simple Lie algebra,
and {Gx: ae 1} be Lie groups of dimension <n. Then G $ V({GX: a e I}).

Corollary 3.4. Let <£ be a class of connected solvable (nilpotent) Lie groups.
Then any connected Lie group in V{$) is solvable (nilpotent).

Proof. This follows from Theorems 3.2 and 2.3.
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We now look at some examples.
Noting, (5), that the Lie algebras of the special unitary groups SU(n) are

simple for n> 1, and that their dimension increases with n, Corollary 3.3 gives:
SU(m) e V(SU(ri)) if and only if m ^ n. Furthermore, noting that the unitary
group U(n) is a quotient group of SU(n)xT (cf. 29.48 of (6)), Theorem 2.5
shows that V(U(n)) = V{SU{n)) for all n. Hence U(m) e V{U{n)) if and only
if m ^ n.

The symplectic groups Sp{n) have simple Lie algebras, (5), and dimension
an increasing function of n. Thus Sp(m) e V{Sp(n)) if and only if m ^ n.

The spin groups spin(«) have a slightly more curious behaviour. For
n # 2, 4 their Lie algebras are simple and the above argument again works.
We can see that spin(2) £ V (spin(l)), since spin(l) is of exponent 2 and
spin(2) is not. Finally we observe that spin(4) e V (spin(3)), since spin(4)
is isomorphic to spin(3) x spin(3). Thus we have spin(w) e V (spin(n)) if and
only itm ^> n or m = n+\ = 4 .

Since the orthogonal group O(n) is a quotient of the product of SO(n)
and a suitable finite cyclic group (cf. 29.49 of (6)), we have V(O(n)) = V(SO(ri)),
for all n. Our usual argument leads to the result SO{m) e V{SO{n)), if m>n
and m # 4.

Non-compact Lie groups such as O(m, n), U(m, ri) and Sp{m, n) can be
treated similarly.
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