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Varieties of topological groups

Sidney A. Morris

We introduce the concept of a variety V_ of topological groups and

of a free topological group F(X , V) of £ on a topological space

X as generalizations of the analogous concepts in the theory of

varieties of groups. Necessary and sufficient conditions for

F(X 3 V) to exist are given and uniqueness is proved. We say the

topological group F (X) is moderately free on X if its topology
M

is maximal and it is algebraically free with X as a free basis.

We show that F.JX) is a free topological group of the variety it
M

generates and that if ^«/W i s i n Z then it is topologically

isomorphic to a quotient group of F(X > VJ . It is also shown

how well known results on free (free abelian) topological groups

can be deduced. In the algebraic theory there are various

equivalents of a free group of a variety. We examine the

relationships between the topological analogues of these. In the

appendix a result similar to the Stone-Cech compactification is

proved.

1. Introduction

The concept of a free topological group was introduced by Markov [5]-

In a similar manner we introduce topological analogues of other concepts
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involved in the theory of varieties of abstract groups. Before giving a

summary of each section, we note that varieties of topological groups have

not been considered before in published papers. Thus nearly all of our

results are new. Further, some of the results on free topological groups,

originally proved by Markov [5] using norms, have been deduced here from

more general results, the proofs of which use elementary methods not

involving norms.

In §2 the concepts of a variety of topological groups and of a free

topological group of a topological variety are introduced. A theorem

(Theorem 2.6), which gives a necessary and sufficient condition for the

latter to exist, is proved. Uniqueness of it is also proved (Theorem 2.9).

In §3 topological varieties of a special type are studied. This

specialization is justified because firstly the results obtained are

significant and secondly some important topological varieties are of this

type. In particular the variety of all topological groups is included.

The results of this section are, then, generalizations of results, on free

topological groups, in [5].

In §1+ we indicate how many of the well known results of [5] on free

(free abelian) topological groups can be deduced from the results of §2 and

§3.

Neumann [6] has various equivalents of the frets group of a variety of

abstract groups. In §5 we examine the relationships between the topological

analogues of these. In fact these analogues are found not to be

equivalent. This is one of the most noticeable differences between the

algebraic and topological theories.

In the Appendix a result similar to the Stone-Cech compactification is

proved. The reason for including it in a paper of this type is that its

proof is very similar to the proof of Theorem 2 of [3] on which the main

theorem (Theorem 2.6) of §2 relies.

The notation and terminology conform to that of [4] and [6] except the

following. By a group, an isomorphism and a space we mean a topological

group, a topological isomorphism and a topological space respectively. By

an abstract group, a relatively free abstract group, an algebraic relator

and an algebraic variety (of abstract groups) we mean the respective concepts
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of [6] when the words "algebraic" and "abstract" have been deleted. A free

abstract group F of the algebraic variety V_ with basis X will be

denoted by F(X , V) . If X is an arbitrary topological space then X

denotes the corresponding set. If G is a topological group then G

denotes the corresponding abstract group. J]~ S (S topological spaces),
ye r Y Y

\x\ and cl.X denote the cartesian product of the spaces Sy with the

product topology, the cardinal of X and the closure of X respectively.

Note that whenever we refer to a topology on an abstract group we shall

mean a topology compatible with the group structure. We conclude the

introduction with the important point that unlike earlier papers dealing

with free topological groups, we do consider tbpological groups which are

not Hausdorff.

2. Varieties and their free groups

DEFINITION 2.1 A non-empty class V^ of groups is said to be a variety

if it has the properties:

(a) if G is a subgroup of "["[" G , where V is any index set and

Y & r
 Y

G is in | for y e r , then G is in £ ,

(b) if H is a quotient group of any G in j£ , then H is in V_ .

REMARK 2.2 Property (a) is equivalent to (i) closure under cartesian

products together with (ii) closure under subgroups.

REMARK 2.3 We see that a variety determines an algebraic variety;

the latter is simply the class of abstract groups which with some topology

appear in the former. (This is indeed an algebraic variety by 15.51 of

[6].)

Note that the symbols V_ , j/ and so on, will always denote varieties.

Further the algebraic variety determined by V_ will be denoted by £ .

EXAMPLE 2.4 We list here some important varieties,

(a) the class of all groups,

(b) the class of all abelian groups,

(c) the class V , where G is in V if and only if fi is in 7 ,
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a fixed algebraic variety,

(d) the class £ , where G is in V_ if and only if G has the

indiscrete topology and G is in j/ , a fixed algebraic variety.

Clearly in (c) and (d) j£ = J£ • Also (a) and (b) are special cases of

(c).

DEFINITION 2.5 Let F € £ . Then F is said to be a free group of

J£ on the space X , denoted by F(X , VJ , if it has the properties:

(a) X is a subspace of F ,

(b) X generates F algebraically,

(c) For any continuous mapping 4> of X into any group H in .7 ,

there exists a continuous homomorphism $ of F into H such

that <t(x) = $(x) on X .

THEOREM 2.6 Let X be a completely regular space and £ a variety.

Then F(X 3 VJ exists if (and only if) there is a G e £ which has X as

a subspace.

Proof Let 5 be the family of all groups {#} where H is in 7

and \H\ < max{|j| , K } = m .

Noting that Theorem 2 of [3] is true even when R is not Hausdorff,

we can apply it here to (S , X) . Therefore there exists an F € S with

the property that for any continuous mapping (j) of X into any H in S ,

there exists a continuous homomorphism $ of F into H such that

§(x) = §(x) on X . Also X generates F algebraically.

Let 4>i be any continuous mapping of X into any H in V. . The

subgroup Hi of H generated by <j)i (X) is in £ and |fij | < m • Thus

Hi is in S . Then <j>! is a. continuous mapping of X into flj . Thus

there exists a continuous homomorphism $ of F into Hj and therefore of

F into 5 , such that <b(x) = $(x) on AT . Hence ? is an F(X , VJ •

LEMMA 2.7 Let G e £ . Then there exists an A in V , where A

has the indiscrete topology and is algebraically isomorphic to G .

Proof Let C and D be the Cartesian product and the direct product

respectively of a denumerable number of copies of G . Then D is dense in

C (Theorem 6.2 of [2]). Therefore C/D has the indiscrete topology.
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Clearly C 3 D and C/D are in £ .

Take the diagonal copy of G in C , {(x , x , x 3 ) : x e G} = H .

Let f be the natural mapping of C onto C/D . Then / is a

homomorphism. Now f(a) \ f(b) for a \ b and a 3 b £ H . Then

f(H) = A < C/D . Therefore A is in £ and / is an algebraic isomorphism

of H onto A . Thus A is algebraically isomorphic to G , and since

A C c/D , A has the indiscrete topology.

THEOREM 2.8 If F(X , V) exists, then F(X , V) = F(X , V) .

Proof Let <j> be any mapping of X into fi£7 . By Lemma 2.7. A

is in V_ where A has the properties stated in that lemma. Let T be an

algebraic isomorphism from G to A . Then T<j> is a continuous mapping

from X into A (since A has the indiscrete topology). Therefore there

exists a continuous homomorphism $ of F(X 3 V) into A such that

T= T<j> . Then T $ is a homomorphism of F(X 3 V) into G such that

THEOREM 2.9 Let X be an arbitrary space. If F\ is in £ and has

properties (a) and (a) of Definition 2.5 and the property:

(b1) the smallest closed subgroup of F\ that contains X is fj

itself (that is X generates Fj topologically)3

then there is an isomorphism T of F(X , VJ onto Fx such that

~t(x) = x on X .

Proof By Theorem 2.6 F(X s VJ exists. The remainder of the proof

is analagous to the proof of Theorem 8.9 of [2].

Theorem 2.9 is indeed a generalization of Theorem 8.9 of [2].

COROLLARY 2.10 Let £ contain the additive group R of reals (with

the usual topology). Then F(X , VJ exists for any Tychonoff space X .

Proof Any Tychonoff space can be embedded in a cartesian product G

of copies of R (p. 118 of [43). How G is in £ and the result then

follows from Theorem 2.6.

(The proof of the following lemma arose from a discussion with John

Ellwood.)

LEMMA 2.11 Let F be a group which is generated algebraically by

~X . If § is a homomorphism from F into a group G such that 4>|X is

open then $ is open.
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Proof Let 0 be an open set in aX , a E F . Then 0 = aOj , where

0i is open in X . Therefore §(0) = $(a) <i(0\) . Now 9(0\) is open in

G , since §\x is open. Thus $(0) is open. Hence 0 open in aX ,

implies $(0) open.

Now F = L> aX . Let 4 be an open set in F . Then

= 9(A n ^Up a x ; = Vp <$>(A n a W . However $64 n a W is open in G

(by the first paragraph). Thus 9(A) is open.

THEOREM 2.12 Let X be in V . Then F(X J V) exists and has a

quotient group isomorphio to X .

Proof By Theorem 2.6 F(X , V) exists. Now consider the identity

mapping (j) .- X (C F(X , VJ) -* X . This is continuous and therefore can be

extended to a continuous homomorphism $ of F(X , VJ onto X . Clearly

ij) is an open mapping. Thus by Lemma 2.11, $ is open. Hence $ is an

open continuous homomorphism of F(X 3 V) onto X and the theorem follows.

We conclude this section with a remark which can easily be verified:

F(X j YJ has the discrete topology if and only if it has X as an open

subset.

3. Some special varieties

DEFINITION 3.1 Let F be an arbitrary group and VJF) the

intersection of all varieties containing F . Then VJF) is said to be the

variety generated by F . (Clearly this is indeed a variety.)

It is readily seen that if F is F(X 3 W) for some space X and

variety g , then F is F(X , VJF)) .

DEFINITION 3.2 The group F is said to be moderately free on the

space X , and will be denoted by P W , if,

(i) F is a relatively free abstract group with X as a free

generating set,

(ii) the topology of F is the strongest group topology (on F) which

will induce the same topology on X .

THEOREM 3.3 If F is F^X) then F is F(X , VJF)) .

Proof Let $ be an arbitrary continuous mapping from X to any G
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in VJF) . Now by Theorem 2.8 P is F(X , VJF)) . Therefore there exists

a homomorphism $ of F into G such that $\x = $ . We show now that $

is continuous.

Let {£/} be a basis for open neighbourhoods of 1 in T , the given

topology on F . Let {V} be the collection of inverse images of open

neighbourhoods of 1 in G . The system {U n/} is a basis for open

neighbourhoods of 1 for a group topology T . (See Theorem U.5 of [2].)

Obviously T induces the given topology on X , since <J> • is continuous

and f 3 T . But since F is FJX) , T 3 T . Thus T = T and hence *

is continuous.

We have been unable to find a non-trivial necessary and sufficient

condition for an arbitrary group F to be a free group of the variety it

generates. However Theorem 3.3 gives a sufficient condition.

In this section we shall confine ourselves to moderately free groups.

While this line of study may seem rather restrictive, the results obtained

are significant and include results of Markov [5] on free topological

groups. Further justification comes from the fact that the free groups of

varieties of the type mentioned in Example 2.Me) are moderately free.

LEMMA 3.4 Let G be in £ and have generating space X . Then G

is a continuous algebraic isomorphic image of a quotient group B of

F(X j V) where H has X as a generating space also.

Proof Clearly F(X , V) exists. Consider the identity mapping

<f> : X (C F(X , V)) •*• X(<^_ G) . This is a continuous mapping of X into G .

Therefore <j> can be extended to a continuous homomorphism $ of F onto

G . (The homomorphism $ is onto since $(F) D X and X generates G

algebraically.) Therefore G is algebraically isomorphic to a quotient

group H of F(X , V) .

Now H has a stronger topology than G . Let 8 be the natural

mapping of F(X , V) onto H , and 6(X) = X' . Then 6 maps X one to

one onto X' . The topology on X' is weaker than that on X since

$\X : X •* X' is continuous. However X is a subspace of G , therefore

X' has a stronger topology than X . Thus X and X' are homeomorphic.

THEOREM 3.5 Let FM(X) be in £ . Then FyCX) is isomorphic to a

quotient group of F(X 3 V) .
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Proof By Lemma 3.^, ^M^) is a continuous algebraic isomorphic image

of the quotient group H of F(X , VJ . Also H has A" as a generating

space.

Clearly, by Definition 3.2 (ii) and the above statement, H and F

are isomorphic.

4. Free groups

DEFINITION 4.1 Let X be a completely regular space and K the

variety of all (all abelian) groups. Then F(X , VJ is said to be the

free (free abelian) group on X .

The existence and uniqueness of the free (free abelian) group on a

Tychonoff space, that is Theorem 1 and Theorem 2 (Theorem 20 and 21 of [5])

follow from Corollary 2.10 and Theorem 2.9 respectively. (Note that (F3)

of [5] has been extended to the case when G is an arbitrary group, not

necessarily Hausdorff.)

Theorem 3 and Theorem 21 of [5] are special cases of Theorem 2.8.

Theorem 5 and Theorem 23 of [5] can be deduced from Theorem 2.12. Finally,

Theorem 2k and Corollary 9 of [5] follow from Theorem 3-5.

THEOREM 4.2 Let V^ be an algebraic variety of exponent zero, and |/

b& the largest variety such that it = V. . If X is a Tychonoff space,

then F(X , WJ exists. Further F(X , WJ is isomorphic to F/V(F) where

V(F) is algebraically a verbal subgroup of F , the free group on X .

Proof Clearly F(X , WJ exists by Corollary 2.10, and F(X , K) is

moderately free on X . The remainder of the theorem then follows from

Theorem 3.5-

It can be proved easily that F(X , WJ is disconnected.

The following lemma is a special case of Lemma 3.*+.

LEMMA 4.3 Let G be a group with generating space X . Then G is

a continuous algebraic isomorphia image of a quotient group H of the free

group on X 3 H having X as a generating space also.

THEOREM 4.4 If J is a fully invariant abstract subgroup of F ,

where F is the free group on X , then F/A is moderately free.

Proof F/A is algebraically relatively free. If A % F then
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A n x = <t> , An x~1X = A n xx'1 = {1} .

Let / be the natural mapping F -*• F/A and f(X) = X' . By the

above paragraph / maps X one to one onto X' . Clearly X' has a

weaker topology than X . Let F' be the free group on X' . Then F

and F' are algebraically isomorphic. Since X' has a weaker topology

then * , F' has a weaker topology than F . Now F/A (by Lemma U.3)

is a continuous algebraic-isomorphic image of F'/B (some B).

The topology on F/A is the strongest such that the natural mapping

of F' to F/A is continuous. (For suppose there is a stronger topology

with this property. Then we have continuous mappings F •* F' -*• F/A

(new topology). This is a contradiction to F/A being a quotient group of

F .)

Thus F/A is isomorphic to F'/B . But every group algebraically

isomorphic to F/A is a continuous image of F'/B . (This follows from

Lemma k.3 by noting that U is dependent only on the algebraic structure

of G and the topology on X .) Hence the topology on F/A is the

strongest topology on the group F/A which will induce the given topology

on X' . The result follows.

THEOREM 4.5 Let V^ be the variety of all abelian groups. If X is
any Tychonoff space, then X is a closed subspaoe of F(X 3 VJ . Further
F(X , V) is a Hausdorff space.

Proof By Corollary 2.10, F(X , VJ exists. Suppose the reduced word

a\ %
y = X\ ... x , x . S J j i = 1 , . . . , n a is an accumulation point

of X , but is not in X . Let R be the additive group of reals (with the

usual topology).

Define a continuous mapping <j> of X into R by <b(X) = 1 . Then

there exists a continuous homomorphism $ of F(X , VJ into R such that

n
$\X = <|> . Since y is an accumulation point of X , §(y) = 1 a^ = 1 .

i=l

Without loss of generality, then, a < - 1 •

Put Y = {x : x G R , 0 < x < 1} . Since X is a Hausdorff space,

there exists an open subset A of X such that x e A and
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x ^ i l , i = lt... ,n-l. Now since X is completely regular, there

exists a continuous mapping i|) of X into Y (with the usual topology)

such that \p(x) = 0 and ip(X - A) = 1 . Then I|I is a continuous mapping

of X into R . Therefore there exists a continuous homomorphism V of

F(X , V) into i? such that V\x = $ .

n-1
Clearly V(X) = fffl c y and V(y) = £ a = 2 - a > 2 . Then

V(y) is not an accumulation point of V(X) and hence y is not an

accumulation point of X . Thus X is a closed subspace of F(X , VJ .

It follows immediately that F(X s V) is Hausdorff.

5. Relatively free groups

Neumann has various equivalents of "the free abstract group of an

algebraic variety", namely 13.11, 13.21, 13.22 and 13.23 of [6]. In this

section we examine the relationships between the topological analogues of

these.

DEFINITION 5.1 A group F is said to be relatively free if it

possesses a generating space X such that every continuous mapping of X

into F can be extended to a continuous endomorphism of F . X is said

to be a free generating space of F .

Clearly a free group of a variety is relatively free.

DEFINITION 5.2 Let X be a generating space for the group F .

£l £n
Then x\ ... x , x• e X , e = ± 1 is said to be a law if

El e
§(x\) ... 4>(x ) = 1 for any continuous mapping <|> of X into F .

DEFINITION 5.3 A subgroup A of the group B is said to be fully

invariant if f(A) C A for f an arbitrary continuous endomorphism of B .

Note that if A is a fully invariant subgroup of B then A is an

algebraic normal subgroup of B . Also cl.A is a fully invariant subgroup

of B .

We now formulate the analogues of 13.11, 13.21, 13.22 and 13-23 of [6].
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(5.U) G is relatively free with generating space X .

(5.5) G has a generating space X such that every algebraic relator

of X is a law in G .

(5-6) G has a representation G = F/A as the quotient group of the

free group F by a fully invariant subgroup A of F , where

F and G have the same generating space.

(5-7) G has a representation G = F/R such that every continuous

endomorphism of the free group F induces the natural

endomorphism of G , where G and F have the same generating

space and R is a normal subgroup of F . (The induced

endomorphism, if it exists, is clearly continuous.)

THEOREM 5.8 Property (S.7) is equivalent to (5.6), which implies

(S.4) which in turn implies (5.5).

Proof

(i) Clearly (5.7) is equivalent to (5.6).

(ii) Suppose (5.6) is satisfied. Let X be the free generating space

of F and f be the natural mapping of F onto F/A . Clearly

Y = {Ax : x € X} is a generating space of F/A .

Let (j) be an arbitrary continuous mapping of Y into F/A . Define

a mapping y of X into F by y(x) = y 3 x £ X , y € F if

ty(Ax) = Az and y is a fixed coset representative of Az . Let 0 be an

open set in . F , then y~ (0) = f (<f (f(0))) . Since <J> is continuous

and / is open and continuous, y is continuous.

Therefore y can be extended to a continuous endomorphism T of F .

Since A is fully invariant, T induces an endomorphism $ of F/A and

$ is an extension of (j) . Now F is continuous and f is open and

-1 -1 -1
continuous, thus $ (A) = f(T (f (A))) implies $ is continuous. Hence

(5.1*) holds.

(iii) Suppose 5.U is satisfied. Given an arbitrary continuous mapping

<j> ; X -*• G we can define a many-valued function $ : G •* G by

$Cx! ... xn
 n) = i>(xx) ... i)(xn)

 n . Clearly $ is

single-valued if it is single-valued at 1 . But (5-1*) holds,
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thus $ is single-valued at 1 and therefore the result

follows.

COROLLARY 5.9 If G is a quotient group of a relatively free group

F by a fully invariant subgroup of F , then G is relatively free.

To show that the only relationships between the properties (5.^),

(5-5), (5-6) and (5.7) are those expressed in Theorem 5.8 we give the

following example.

EXAMPLE 5.10 Let Bid) and B(n) be the additive abstract group

of integers with the topologies lid) and T(n) respectively, where T(d)

is the discrete topology and T(n) is the topology which has as a basis

the set of all cosets of the subgroups gpin} } gp{2n} , ... It is readily

verified (U.21 of [Z]) that T(n) is a non-discrete Hausdorff group

topology.

Consider B(n) , n > 2 . Let the mapping <(> take 1 onto n .

This certainly is a continuous mapping of the generating space X of H(n)

into H(n) . Let the obvious homomorphic extension of (J> be $ . Then

$ [gp{2n}] = gp{2} . Thus $ is not continuous. Hence H(n) is not

relatively free with generating space X . However since every group which

is algebraically relatively free has property (5.5), H(n) has this property.

Hence (5-5) does not imply (5-M-

An auxiliary result is that not every Hausdorff topology on an

algebraically relatively free group gives rise to a relatively free group.

Another interesting point arises from the above discussion. Obviously

F(X , VjH(n)) exists and is algebraically isomorphic to B(n) but has a

strictly stronger topology. Thus the variety generated by a group can

contain a group algebraically isomorphic to the former group but having a

strictly stronger topology.

Consider H(l) • Clearly this is a relatively free group which is not

isomorphic to a quotient group of the free group on X , that is H(d) •

Hence property (5.U) does not imply (5.6).

While we have shown that (5-5) does not imply (5.U), Theorem 5-11 shows

that (5.5) together with another property implies (5-1*)- The proof of

Theorem 5.11 is similar to the second part of the proof of Theorem 3.3.
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THEOREM 5.11 If G has property (5.5) and the given topology on G

is the strongest topology which, will induce the same topology on X , then

G is relatively free.

Note that (5.5) is equivalent to the property that every continuous

mapping X •> G can be extended to an endomorphism of G .

Using Lemma 4.3 and Theorem 5-11 we can prove the following result.

COROLLARY 5.12 Let G be a group with generating space X . If G

has property (5.5) then the group H mentioned in Lemma 4.3 is relatively

free.

We conclude with a Theorem which is very easily proved.

THEOREM 5.13 (i) If the relatively free group F has a discrete

generating space X , then F is a relatively free abstract group.

(ii) If F satisfies (i) and A is a fully invariant subgroup of

F , then A is a fully invariant abstract subgroup of F .

(Hi) If the relatively free group F has the discrete topology, then

it is moderately free.

Appendix

The following lemma is easily proved using the elementary theory of

filter bases.

LEMMA If X is any subspace of a Hausdorff space H , then
\x

|cl.A'l < 22

The following theorem is a result similar to the Stone-Cech

compact ification. In fact the latter can be proved similarly.

THEOREM Given any topological space X and any cardinal m , there

exists a compact space F(m , X) with the following properties:

(i) X is a subspace of F(m 3 X) ,

(ii) X is dense in F(m , X) ,

(Hi) for any continuous mapping $ of X into any compact space G ,

where \G\ < m , there exists a continuous mapping $ of

F(m , X) into G , such that §(x) = 4>(x) on X ,
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(iv) for any continuous mapping <j> of X into any compact Hausdorff

space H , there exists a continuous mapping $ of F(m , X)

into G such, that <b(x) = §(x) on X .

Proof Let (j> be any continuous mapping X •* H , H a compact

Hausdorff space. Then without loss of generality we can assume
\x\

\H\ < 2 2 . For consider cl.<j>(".XJ . Its cardinality, by the above lemma,
| <)> (x) | | x |

satisfies |cl.<|><X> | < 2 2 < 22 . Also cl.<f>(X) is a compact

Hausdorff space.

Let S be the family of all homeomorphism classes of compact
\x\

topological spaces with cardinal < max{m 3 2
2 }. Let {(G. j

— ir

consist of all pairs (G• , $.•) where G. e 5 and <(>. is a continuous
% X- % Is

mapping of X into G. . Let G = JT G. .

Let V be a mapping X •+• G defined by [\)(x) ] • = (j). (x) • Then v

is a homeomorphism of J onto v(X) . (There exists a space H in S

which contains X as a subspace, for instance the one point compactification

of X . Now use Lemma 5 on p.ll6 of [4] where the mapping which (a)

distinguishes points and (b) distinguishes points and closed sets is the

mapping of X into H which takes X identically onto X . )

Thus we can regard X as a subspace of G . Let F be the closure

of \>(X) in G . Then F is compact, since G is compact. F is the

required space.

Now (i) and (ii) are obvious. Let <)> be any continuous mapping

X •* G , G e S . Then (G , <j>; = (G , 4> ) where y € I . Let p Q be

the projection of G on G Then <j> = pQV or by identifying X with

V(X) 3 4> = p |vCX> . Define $ = P0\F • Then $ is a continuous mapping

of F into G (since p is a continuous mapping) and $(x) = §(x) on

X .

The final theorem includes the results of [7]. However it can be
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proved as above, by noting that the one point compactification of a T

space is 2" .

THEOREM Given any T space X any cardinal m , there exists a

compact T space F(m , X) satisfying (i), (ii) and (iv) of the above

theorem and (Hi) ' below:

(Hi) ' for any continuous mapping $ of X into any compact T

space G , where \G\ < m , there exists a continuous mapping

$ of F(m j X) into G such that $(x) = <i>(x) on X .
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